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Abstract

This note is one of two supplements to the paper “Linear Regression Analysis under Sets
of Conjugate Priors”, by G. Walter, T. Augustin, and A. Peters, in revision for ISIPTA
07, in which Bayesian inference in linear regression models is extended by considering
imprecise conjugated priors.

A central step towards that general framework was formulated in Theorem 2 there, where
it was shown that the “normal regression model” constitutes a luck-model. The name
luck-model was introduced to denote situations for which the update step in Bayesian
learning is especially elegant and simple (described in detail in [5] by Definition 1), since
such models can be extended to imprecise priors, by applying a variation and an exten-
sion of a method for inference in i.i.d. exponential families presented at isipta’05 by
Quaeghebeur and de Cooman.

In the following, the proof of that Theorem 2 will be given in detail. Before that, as
a preparation, the derivation of the “normal regression model” and some other parts
needed from [5] will be repeated.
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1 Introduction

1.1 Bayesian Analysis of Regression Models

The regression model is noted as follows:

z = Xβ + ε , X ∈ IRk×p , β ∈ IRp , z ∈ IRk , ε ∈ IRk ,

where z is the response, X the so-called design matrix with the p regressors collected
column by column, and β is the p-dimensional vector of regression coefficients.

Each error term εi is assumed to be normally distributed with mean value 0 and variance
σ2; all error terms are taken to be uncorrelated:

εi
i.i.d
∼ N(0, σ2) =⇒ ε ∼ Nk(0, σ

2
I)) (σ2 known)

Because X is considered fixed and non-stochastic, we get the following likelihood of z:

z | β ∼ Nk(Xβ, σ
2
I)

In principle several conjugate priors to this likelihood exist. The standard choice (see,
e.g., [1, p. 244ff]), on which we also focus in this paper1, is a multivariate normal distrib-
ution on β with parameters β(0) and Σ

(0). (As in [5], we will denote the prior parameters
with the upper index (0), whereas the posterior parameters will be denoted with upper
index (1).) The model of Bayesian regression analysis based on the standard prior will
be called normal regression model.

β ∼ Np

(
β(0), σ2

Σ
(0)
)

with β(0) ∈ IRp , Σ
(0) ∈ IRp×p positive definite (p.d.) ,

i.e.

p(β) =
1

|Σ(0)|
1
2 (2π)

p

2 (σ2)
p

2

exp

{

−
1

2σ2

(
β − β(0)

)T
Σ

(0)−1 (
β − β(0)

)
}

. (1)

The posterior, calculated by applying Bayes’s rule p(β | z) ∝ p(z | β) p(β), is then the
multivariate normal distribution Np

(
β(1), σ2

Σ
(1)
)

with posterior parameters

β(1) =
(

X
T
X + Σ

(0)−1
)
−1 (

X
Tz + Σ

(0)−1
β(0)
)

(2)

=
(

X
T
X + Σ

(0)−1
)
−1 (

X
T
Xβ̂ + Σ

(0)−1
β(0)
)

= (I − A)β(0) + Aβ̂LS with A =
(

X
T
X + Σ

(0)−1
)
−1

X
T
X

Σ
(1) =

(

X
T
X + Σ

(0)−1
)
−1

. (3)

1In the second supplement [4], an alternative approach is considered more in detail.
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1.2 Classical Bayesian Inference and LUCK-models

For the application presented in [5], it is quite convenient to distinguish certain standard
situations (called models with ‘Linearly Updated Conjugate prior Knowledge’ (luck)
here) of Bayesian updating on a parameter ϑ based on a sample w with likelihood
f(w |ϑ) by

p(ϑ |w) ∝ f(w |ϑ) · p(ϑ) , (4)

where the prior p(ϑ) and the posterior p(ϑ |w) fit nicely together in the sense that

i) they belong to the same class of parametric distributions, a case where they are
called conjugate, and, in addition,

ii) the updating of one parameter (y(0) below) of the prior is linear.

More precisely, we introduced the following definition:

Definition 1 Consider classical Bayesian inference on a parameter ϑ based on a sample
w as described in (4), and let the prior p(ϑ) be characterized by the (vectorial) parameter
ϑ(0). The pair

(
p(ϑ), p(ϑ |w)

)
is said to constitute a luck-model of size q in the natural

parameter ψ with prior parameters n(0) ∈ IR+ and y(0) and sample statistic τ(w), iff
there exist q ∈ IN as well as transformations of ϑ into ψ and b(ψ) and of ϑ(0) into n(0)

and y(0), such that p(ϑ) and p(ϑ |w) can be rewritten in the following way:2

p(ϑ) ∝ exp
{
n(0)
[
〈ψ, y(0)〉 − b(ψ)

]}
(5)

and
p(ϑ |w) ∝ exp

{
n(1)
[
〈ψ, y(1)〉 − b(ψ)

]}
(6)

with

n(1) = n(0) + q and y(1) =
n(0)y(0) + τ(w)

n(0) + q
. (7)

Theorem 2, relating luck-models with the normal regression model described in Sec-
tion 1.1, was formulated in the following way:

Theorem 2 Consider the normal regression model described by the prior p(β) from (1)
with prior parameters β(0) and Σ

(0), and the multivariate normal posterior defined by
(2) and (3).
Fixing a value n(0),

(
p(β), p(β | z)

)
constitutes a luck-model of size 1 with prior para-

meters

y(0) =
1

n(0)

(
Λ

(0)

Λ
(0)β(0)

)

=:

(

y
(0)
a

y
(0)
b

)

(8)

and n(0) and sample statistic

τ(z) = τ(X, z) =

(
X

T
X

X
Tz

)

=:

(
τa(X, z)
τb(X, z)

)

. (9)

2〈a, b〉 denotes the scalar product of a and b.
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2 Proof of Theorem 2 from [5]

For proving Theorem 2, two steps have to be performed: First, showing that the prior of
(1) fits the form of the prior in Definition 1; and second, showing that the update step
described by Equations (2) and (3) is equivalent to an update step in a luck-model.

2.1 Proving Step 1: Equivalence of the Prior

For a more direct link to the model introduced by [2], the factor c
(
n(0), y(0)

)
that was

omitted in Definition 1, is kept here.

So, this is the ‘target’ form we want to achieve:

p(ψ) = c
(
n(0), y(0)

)
exp

{

n(0)
[ 〈
ψ , y(0)

〉
− b(ψ)

]}

, (10)

where ψ is some transformation of β, and n(0) and y(0) are transformations of the prior
parameters β(0) and Σ

(0).

Starting with the prior (1), by collecting all parts that depend on the prior parameters
only, we get

p(β) =
1

|Σ(0)|
1
2 (2π)

p

2 (σ2)
p

2

exp

{

−
1

2σ2

(
β − β(0)

)T
Σ

(0)−1 (
β − β(0)

)
}

=
1

|Σ(0)|
1
2 (2π)

p

2 (σ2)
p

2

· exp

{

−
1

2σ2

[

βTΣ(0)−1
β − βTΣ(0)−1

β(0) − β(0)T
Σ

(0)−1
β + β(0)T

Σ
(0)−1

β(0)
]}

=
1

|Σ(0)|
1
2 (2π)

p

2 (σ2)
p

2

· exp

(

−
1

2σ2
β(0)T

Σ
(0)−1

β(0)

)

︸ ︷︷ ︸

=: c(β(0),Σ(0))

· exp

{

−
1

2σ2
βTΣ(0)−1

β +
1

2σ2
βTΣ(0)−1

β(0) +
1

2σ2
β(0)T

Σ
(0)−1

β

}

.

As βTΣ(0)−1
β(0) and β(0)T

Σ
(0)−1

β are scalar and it holds that
(

βTΣ(0)−1
β(0)
)T

= β(0)T
Σ

(0)−1
β,

we can simply add these two terms.

For simplification of notation, we introduce the matrix Λ
(0) := Σ

(0)−1
with its elements

(
Λ

(0)
)

ij
=: λ

(0)
ij .

Furthermore, let us fix the index letters as follows:

h, i, j index for 1, . . . , p = dim(β)
l, m index for 1, . . . , k = dim(z)
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With these denotations, we get

p(β) = c(β(0),Σ(0)) · exp

{

−
1

2σ2
βTΛ(0)β +

1

σ2
βTΛ(0)β(0)

}

= c(β(0),Σ(0)) · exp

{

−

p
∑

i=1

p
∑

j=1

βiβj

2σ2
· λ

(0)
ij +

p
∑

i=1

βi

σ2
·
( p
∑

j=1

λ
(0)
ij β

(0)
j

)}

= c(β(0),Σ(0)) · exp

{

−

p
∑

i=1

β2
i

2σ2
· λ

(0)
ii −

p−1
∑

i=1

p
∑

j=i+1

βiβj

σ2
· λ

(0)
ij

+

p
∑

i=1

βi

σ2
·
( p
∑

j=1

λ
(0)
ij β

(0)
j

)}

Therefore, we have

c
(
β(0),Σ(0)

)
=

1

|Σ(0)|
1
2 (2π)

p

2 (σ2)
p

2

· exp

(

−
1

2σ2
β(0)T

Σ
(0)−1

β(0)

)

and b(ψ) = 0 ,

as there is no summand in the exponent that depends on components of β only.

Now n(0) has to be introduced ‘artificially’ to make the last step in the alignment to the
form of (10). To this end, the factor 1

n(0) is multiplied to each summand in the exponent

to form the term
〈
ψ , y(0)

〉
. Because ψ, as a transformation of β, must remain unchanged

during an update step, 1
n(0) is associated with the parts depending on β(0) and Σ

(0), thus

forming y(0). Therefore, the above noted transformations of β and the prior parameters
β(0) and Σ

(0) are

ψ =






























−
β2

1

2σ2

...

−
β2

p

2σ2

−
β1β2

σ2

...

−
βp−1βp

σ2

−
β1

σ2

...

−
βp

σ2






























, y(0) =































λ
(0)
11

n(0)

...

λ(0)
pp

n(0)

λ
(0)
12

n(0)

...

λ
(0)
p−1,p

n(0)

1
n(0)

∑p

j=1 λ
(0)
1j β

(0)
j

...
1
n(0)

∑p

j=1 λ
(0)
pj β

(0)
j































,







p summands







p(p− 1)
2







p
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and so equivalence with (10) is reached.

2.2 Proving Step 2: Equivalence of the Update Step

The update step for a luck-model of size q leads to the following posterior:

p(ψ |w) = c
(
(n(0) + q), y(1)

)
exp

{

(n(0) + 1)
[ 〈
ψ , y(1)

〉
− b(ψ)

]}

, (11)

with y(1) =
n(0)y(0) + τ(w)

n(0) + q
.

To verify that the normal regression model constitutes a luck-model, we have to check
whether the normal prior (1), after being updated along (2) and (3), has the form of (11).
Because n(0) was introduced ‘artificially’, the normal regression model can be shown to
constitute a luck-model of any size q; the choice of q does not affect the posterior in-
ferences in terms of β(1) and Σ

(1), because in the “retranslation” step 4 in Section 3.2
of [5], n(1) = n(0) + q will be canceled out: Σ

(1) can be derived from Λ
(1) = n(1) · y

(1)
a ; the

same applies for the derivation of β(1) from y
(1)
b . Therefore, we will set q =: 1 w.l.o.g.

Step 2 of the proof can be done for each of the summands of the exponent separately.
So, in the following for each summand of the exponent the equivalence of the update
step in the normal regression model with the update step in a luck-model of size 1
is shown. As a by-product, the form of τ(w) can be determined. τ(w) is here, not as
intended by Quaeghebeur and de Cooman, already known from the likelihood, but so
far undetermined, because considerations were started from the conjugate prior directly.
Although only z is considered as the stochastic part of the sample and X is considered
fix, both will explicitly appear as the arguments of the function τ(·) to clarify the de-
pendency on X.

Rewriting (2) and (3) with Λ
(0) instead of Σ

(0)−1
, we get

β(1) =
(
X

T
X + Λ

(0)
)−1 (

X
Tz + Λ

(0)β(0)
)

Λ(1) = X
T
X + Λ

(0) .

Again some simplification of notation is applied: The elements of the design matrix X

are denoted with lower case x: (X)l,i =: xl,i; furthermore the following equivalence is of
use for checking the equivalence in the third group of summands:

β
(1)
j =

(

Λ
(1)−1 (

X
Tz + Λ

(0)β(0)
))

j

=

p
∑

i=1

(

Λ
(1)−1

)

ji

(
X

Tz + Λ
(0)β(0)

)

i

=

p
∑

i=1

(

Λ
(1)−1

)

ji

( k∑

l=1

xlizl +

p
∑

h=1

λ
(0)
ih β

(0)
h

)

.
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On the following two pages, we will have the summands in the exponent of the prior on
the left side, which are updated by the ‘observation (X, z)’ according to the luck-model
by directly replacing the prior parameters n(0) and y(0) with the posterior parameters
n(1) and y(1). Then, the updated parameters are ‘decoded’ using Equations (2) and (3),
and the resulting terms are transformed to reveal that they can actually be obtained by
performing the update step of a luck-model of size 1.
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︸
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︸

y
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2 1

2σ
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·

1

n
(1
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(1
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1
1
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︷
︸
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(1
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1
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−
β
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2σ
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︸
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·
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1
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)

p
∑ j
=

1

λ
(0

)
p
j
β

(0
)

j

︸
︷
︷

︸

y
(0

)
p
(p

+
3
)

2

-
−
β

p

σ
2
·

1

n
(1

)

p
∑ j
=

1

λ
(1

)
p
j
β

(1
)

j

︸
︷
︷

︸

y
(1

)
p
(p

+
3
)

2

=
−
β

p

σ
2

︸
︷
︷
︸

ψ
p
(p

+
3
)

2

·
1

n
(0

)
+

1

(

n
(0

)
·

1

n
(0

)

p
∑ j
=

1

λ
(0

)
p
j
β

(0
)

j

︸
︷
︷

︸

y
(0

)
p
(p

+
3
)

2

+
k
∑ l=

1

x
lp
z

l

︸
︷
︷
︸

τ
p
(p

+
3
)

2

(X
,z

)

)
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So, also equivalence of the update step is obtained.

For an overview, the p(p+3)
2

-dimensional transformations ψ, y(0) and τ(X, z) are presented
again in the following:

ψ =






























−
β2

1

2σ2

...

−
β2

p

2σ2

−
β1β2

σ2

...

−
βp−1βp

σ2

−
β1

σ2

...

−
βp

σ2






























, y(0) =































λ
(0)
11

n(0)

...

λ(0)
pp

n(0)

λ
(0)
12

n(0)

...

λ
(0)
p−1,p

n(0)

1
n(0)

∑p

j=1 λ
(0)
1j β

(0)
j

...
1
n(0)

∑p

j=1 λ
(0)
pj β

(0)
j































, τ(X, z) =





























∑k

l=1 x
2
l1

...
∑k

l=1 x
2
lp

∑k

l=1 xl1xl2

...
∑k

l=1 xl,p−1xl,p

∑k

l=1 xl1zl

...
∑k

l=1 xlpzl





























3 A Quick Detour on the Impossibility to Handle

Unknown σ2 in the Same Way

The whole argumentation only was possible because of b(ψ) = 0. In the luck-model,
the respective summand in the exponent is n(0) · b(ψ) for the prior and n(1) · b(ψ) for
the posterior, whereas in an ordinary Bayesian update step, all terms depending on β

only would remain unchanged. This is the crucial point why the so-called normal inverse
gamma regression model, where σ2 is considered unknown, too (and where the prior on
σ2 is modeled through an inverse gamma distribution), cannot be shown to be a luck-
model as well. (See [3, Appendix] for a detailed description of this finding.)
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