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Abstract

This note is one of two supplements to the paper “Linear Regression Analysis under Sets
of Conjugate Priors”, by G. Walter, T. Augustin, and A. Peters, in revision for ISIPTA
07, in which Bayesian inference in linear regression models is extended by considering
imprecise conjugated priors.

In that paper, two different conjugate priors on the regression parameter β were consid-
ered and generalized:

i) the standard choice, advocated, e.g., by [2], and the generalization of which was
presented in detail in [6], and

ii) a prior constructed along the lines of [3, 1], which is to be presented and generalized
in more detail in this supplement: Doing this, it will turn out that a similar
powerful framework like for i) can also be built on this choice: at least for two
regressors, the prior can be shown to be normal with linearly updated parameters,
and so the extension to imprecise priors can be performed in a similar way.
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Derivation of a Conjugate Prior to the Likelihood

Arising from Linear Regression

The regression model is noted as follows:

zi = xTiβ + εi , xi ∈ IRp , β ∈ IRp , εi ∼ N(0, σ2) ,

where zi is the response, xi the vector of the p covariates for observation i, and β is the
p-dimensional vector of adjacent regression coefficients.

In this derivation as in [6], σ2 is assumed to be known.

As xi is considered to be non-stochastic, it holds that zi ∼ N(xTiβ, σ
2), and so the

likelihood for k i.i.d. samples of this kind is the same as (9) in [6]:

f(z | β)

=
k∏
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=
1
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︸ ︷︷ ︸Q
k
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· exp

{

1

σ2

k∑
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( p
∑

j=1

xijβj

)

︸ ︷︷ ︸

〈ψ, τk(z)〉

−
1

2σ2

k∑

i=1

( p
∑

j=1

xijβj

)2

︸ ︷︷ ︸

k·b(ψ)

}

,

which corresponds to the form of the likelihood as requested by [3],

f(z |ψ) =
k∏

i=1

a(zi) · exp{〈ψ, τ k(z)〉 − k · b(ψ)} , (1)

where ψ = ψ(β) is a function of β.

Although σ2 is known, it is not possible to attach it to either β or some parts of X (the
so-called design matrix of dimension (k× p), where row i consists of the observation xi,
i = 1, . . . , k), because it would show up quadratic in 〈ψ, τ k(z)〉, but linear in b(ψ).
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Analyzing the term 〈ψ, τ k(z)〉 more closely, we get

〈ψ, τ k(z)〉 =
1

σ2

k∑

i=1

zi ·

( p
∑

j=1

xijβj

)

=
1

σ2

p
∑

j=1

k∑

i=1

zixijβj

=

p
∑

j=1

βj ·

( k∑

i=1

zi · xij
σ2

)

,

leading to

ψj = βj , j = 1, . . . , p ,

τ k(z)j =
1

σ2

(
X

Tz
)

j
, j = 1, . . . , p ,

b(ψ) =
1

2kσ2

k∑

i=1

( p
∑

j=1

xijψj

)2

.

According to [3], a conjugate prior (and posterior) can be obtained by the following
equation:

p(ψ) = c(n, y) · exp {n · [〈ψ, y〉 − b(ψ)]} .

Here, n and y are the parameters that define the prior distribution on ψ, and b(ψ) is to
be taken from the likelihood. As in our case it holds that ψ = β, we have already the
prior on β, writing

p(β) = c(n, y) · exp {n · [〈β, y〉 − b(β)]} . (2)

The parameter space Y for y is taken as co(T ), the convex hull of the space of τ(z)
without the boundary (see [3] for more details), resulting in Y = {y : y ∈ IRp}, because
τ(z)j = 1

σ2

(
xTz

)

j
∈ IR.

(2) can, at least for the case of two regressors (p = 2), be shown to be a multivariate
normal distribution on β. Starting with arbitrary p, the term in the exponent of a
normal distribution on β can have one of the two following forms:

1

g(n, y)

p
∑

j=1

(
βj − hj(n, y)

)2
(3)

or
(
β − f(n, y)

)T
S(n, y)

(
β − f(n, y)

)
, (4)

where f and h are p-dimensional functions of n and / or y forming the expected value
of β. g(n, y) is a onedimensional function playing the role of the variance in the case of
the components of β being uncorrelated, and S(n, y) is forming the inverse of the co-
variance matrix for a multivariate normal with correlations between the components of β.
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Considering the term in the exponent in (2):

n · [〈β, y〉 − b(β)] = n ·

p
∑

j=1

βj · yj −
n

2kσ2

k∑

i=1

( p
∑

j=1

xijβj

)2

, (5)

we see that there must be summands without, with linear and with squared components
of β in (5) if the square is expanded. As this can be only provided by the second form of
multivariate normal exponents, we will focus on (4) and expand it in order to compare
coefficients with an expanded version of (5).1 As this is tricky for the general case of
arbitrary p (being the number of covariates / regressors), we focus attention on the case
of two regressors as we did in the detailed study presented in [6], Sections 3.3, 4–6.

Denoting the elements of S(n, y) with sij, i, j = 1, 2, we get for (4)

(
β − f(n, y)

)T
S(n, y)

(
β − f(n, y)

)

=
(
β1 − f1(n, y)

)2
s11 + 2

(
β1 − f1(n, y)

)(
β2 − f2(n, y)

)
s12 +

(
β2 − f2(n, y)

)2
s22

= β2
1s11 − 2β1f1(n, y)s11 + f1(n, y)

2s11

+2β1β2s12 − 2β1f2(n, y)s12 − 2β2f1(n, y)s12 + 2f1(n, y)f2(n, y)s12

+β2
2s22 − 2β2f2(n, y)s22 + f2(n, y)

2s22

= β2
1s11 + β2

2s22 + 2β1β2s12

−2β1

(
f1(n, y)s11 + f2(n, y)s12

)
− 2β2

(
f1(n, y)s12 + f2(n, y)s22

)

+f1(n, y)
2s11 + f2(n, y)

2s22 + 2f1(n, y)f2(n, y)s12 ,

whereas for (5), we get

n · [〈β, y〉 − b(β)]

= n · (β1y1 + β2y2) −
n

2kσ2

k∑

i=1

(xi1β1 + xi2β2)
2

= nβ1y1 + nβ2y2 −
n

2kσ2

k∑

i=1

x2
i1β

2
1 + 2xi1xi2β1β2 + x2

i2β
2
2

= nβ1y1 + nβ2y2 −
n

2kσ2
β2

1

k∑

i=1

x2
i1 −

n

kσ2
β1β2

k∑

i=1

xi1xi2 −
n

2kσ2
β2

2

k∑

i=1

x2
i2 .

1(5) must be expanded because we must arrive at a sum on the components of β, and not on the
components of z as we have in the second summand in (5). In order to obtain a sum running on j,
we will have to expand the squared summands in the sum over i and reorder them.
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Comparing coefficients for squared components of β, we obtain

s11 = −
n

2kσ2

k∑

i=1

x2
i1 = −

n

2kσ2
(XT

X)11 = −
n

2kσ2
x11

s22 = −
n

2kσ2

k∑

i=1

x2
i2 = −

n

2kσ2
(XT

X)22 = −
n

2kσ2
x22

s12 = −
n

2kσ2

k∑

i=1

xi1xi2 = −
n

2kσ2
(XT

X)12 = −
n

2kσ2
x12

or S(n, y) = −
n

2kσ2
(XT

X) ,

where xij, i, j = 1, 2 denotes the components of X
T
X.

Using the same notation as in [5] or [6] for the multivariate normal distribution, where
the covariance matrix is denoted by σ2

Σ, with Σ defining the covariance structure, we
have

Σ =
(n

k
· XT

X

)−1

=
k

n
(XT

X)−1 .

Comparing coefficients for the terms linear in β1 and β2, respectively, it follows that

ny1 =
n

kσ2
x11f1(n, y) +

n

kσ2
x12f2(n, y)

ny2 =
n

kσ2
x12f1(n, y) +

n

kσ2
x22f2(n, y)

leading to

f1(y) = kσ2 x22

x11x22 − x2
12

y1 − kσ2 x12

x11x22 − x2
12

y2

f2(y) = −kσ2 x12

x11x22 − x2
12

y1 + kσ2 x11

x11x22 − x2
12

y2 ,

that is, in matrix notation,

f(y) = Ay and y = A−1f(y) ,

with

A =








kσ2
x22

x11x22 − x2
12

−
kσ2

x12

x11x22 − x2
12

−
kσ2

x12

x11x22 − x2
12

kσ2
x11

x11x22 − x2
12








= kσ2(XT
X)−1 .

The system y 7→ f(y) is solvable if A is invertible, that is, if X
T
X is invertible, which

is same the condition as for the calculation of the classical least squares estimator
β̂LS = (XT

X)−1
X

Tz.
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Therefore, under this regularity condition, it holds that

f(y) = kσ2(XT
X)−1 y and y =

1

kσ2
(XT

X)f(y) .

As the result, we have

β ∼ Np

(

Ay ,
kσ2

n
(XT

X)−1

)

as the conjugate prior, or, with y as the expectation value,

A−1β ∼ Np

(

y , A−1kσ
2

n
(XT

X)−1A−1

︸ ︷︷ ︸

= 1
nkσ2 (XTX)

)

.

Now, if a conjugate prior of the form (2) is updated with the likelihood (1) according to
Bayes’s rule p(β | z) ∝ f(z | β) · p(β), then the posterior has the same form as the prior,
but with the parameters n and y updated from their prior values n(0) and y(0) to the
posterior values n(1) and y(1) as follows:2

n(1) = n(0) + k and y(1) =
n(0)y(0) + τ k(z)

n(0) + k
(6)

=
n(0)

n(0) + k
y(0) +

k

n(0) + k
·

1

kσ2
(XTz) .

Just as an example for the similarity (not equivalence!) between the results obtained
here and the model produced by choice i), the posterior expected value for β1 is presented
here:

f1(y
(1))

=
(kσ2

x22)
[

n(0)

n(0)+k
y

(0)
1 + 1

n(0)+k
· 1
σ2 (X

Tz)1

]

− (kσ2
x12)

[
n(0)

n(0)+k
y

(0)
2 + 1

n(0)+k
· 1
σ2 (X

Tz)2

]

x11x22 − x2
12

This can be compared to the form of β
(1)
1 to be found below Remark 3 in [6], or, making

the similarity more obvious, with (4.22) in [4, p. 81], where b1 plays the role of y
(0)
1 and

b2 the role of y
(0)
2 .

As is described in detail in [3], the model of Bayesian updating obtained with such
linearly updated prior parameters can be generalized in a straighforward way to an
imprecise probability calculus by using sets of priors (instead of a single prior as in
classical Bayesian learning): When sets of priors are defined via sets of parameters, and
these sets of parameters are defined by lower and upper bounds, the lower and upper

2As in [6], we will denote the prior parameters with the upper index (0), whereas the posterior para-
meters will be denoted with upper index (1).
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bounds of the sets of posterior parameters can be obtained directly from (6). The poste-
rior parameter y(1) is then also the posterior expected value of the posterior distribution.3

As seen above, we have Ay as the expected value of the normal distribution on β. To get
interpretable results, we must therefore consider sets of Ay(0) and ‘translate’ them into
sets of y(0), which are linearly updated to y(1) and finally ‘retranslated’ to sets of Ay(1)

again, corresponding to the posterior expected value of β. Because the ‘translations’ are
linear, we can get from the lower and upper bounds on Ay(0) directly to the lower and
upper bounds on Ay(1).4 Noted as a step-by-step procedure, we must,

1. fix the lower and upper bounds for f(y(0)) based on the prior knowledege on β;
n(0) must be chosen fix5 and determines the prior variance matrix for β, as it holds
that V(β) = kσ2

n(0) (X
T
X)−1;

2. ‘translate’ the bounds for f(y(0)) into bounds for y(0) by y(0) = 1
kσ2 (X

T
X)f(y(0));

3. perform the linear update step on n(0) and the bounds for y(0) to obtain n(1) and
bounds for y(1);

4. ‘retranslate’ the bounds for y(1) into interpretable bounds for f(y(1)).

Performing these four steps, we get for the posterior expected value of β

E[β | z] = f(y(1))

= kσ2(XT
X)−1 y(1)

= kσ2(XT
X)−1

(
n(0)

n(0) + k
y(0) +

k

n(0) + k
·

1

kσ2
(XTz)

)

= kσ2(XT
X)−1 n(0)

n(0) + k
·

1

kσ2
(XT

X)f(y(0)) + kσ2(XT
X)−1 k

n(0) + k
·

1

kσ2
(XTz)

=
n(0)

n(0) + k
· f(y(0)) +

k

n(0) + k
· (XT

X)−1
X

Tz
︸ ︷︷ ︸

β̂LS

,

and therefore, the posterior expected value is the weighted mean of some chosen prior
expected value f(y(0)) and the common least squares estimator for β with the weights
n(0) and k, respectively.

3See [3] why this is the case also for the general case of distributions belonging to a so-called exponential
family.

4It is only necessary to take into account that either x12 or −x12 are negative.
5We commented on this in [6, Section 6]
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As there are no ‘translations’ performed on n(0), the posterior variance matrix of β is
simply updated to

V(β | z) =
kσ2

n(1)
(XT

X)−1

=
kσ2

n(0) + k
(XT

X)−1 . (7)

Therefore, the lower and upper bounds for the posterior expectation value of β can be
derived easily from the lower and upper bounds for the prior expectation value f(y(0)),
whereas the prior variance matrix does not vary in a set and is simply updated to the
posterior variance matrix through n(1) = n(0) + k. Hence in this model, imprecise calcu-
lus is only possible for the expectation value, but quite simple to perform.

As some exemplary results, the decrease of imprecision for f(y(0)) obtained by the update
step is quantified by

f(y(1)) − f(y(1)) =
n(0)

n(0) + k

(

f(y(0)) − f(y(0))
)

,

where, e.g., f(y(1)) represents the upper bound for f(y(1)). So, for n(0) = k, imprecision
is reduced to its half after the update step.

The prior variance of some regression coefficient βj is, for the same choice of n(0), also
reduced to its half after the update step, as can be seen in (7).
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