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Concept and Scope
Generalizations of Linear Regression

Further Intricacies
Estimation Techniques

Concept and Scope

Linear Regression:

yi = xTi β + εi with E[εi ] = 0, Var(εi ) = σ2,

or E[yi ] = xTi β = xi1β1 + xi2β2 + . . .

I modeling: determine & quantify the influence of each
predictor variable xi1, xi2, . . . on the response variable yi

I tests on estimated regression parameters β1, β2, . . .
I model / variable selection (separate procedures / simultaneous

with estimation)

I prediction of the response variable yn+1 given xn+1

I categorical response =̂ classification
I “supervised learning” in machine learning
I provide enough model flexibility, but prevent overfitting
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Generalizations of Linear Regression

GLM

E[yi ]=h(xTi β)

LM

E[yi ]=xTi β

GLMM

E[yij ]=h(xTijβ+uTijγi )

LMM

E[yij ]=xTijβ+uTijγi

binary, categorical, ordinal,
count data (. . . ) response mo-
deled by response function

binary, categorical, ordinal,
count data (. . . ) response mo-
deled by response function

clustered observations,
repeated measurements,
spatial dependencies, . . .
modeled by random effects

clustered observations,
repeated measurements,
spatial dependencies, . . .
modeled by random effects

AM

E[yi ]=xTi β+f(zi)

univariate smoothing: zi has
nonlinear influence on yi .
functional form estimated via
basis functions approach

univariate smoothing: zi has
nonlinear influence on yi .
functional form estimated via
basis functions approach

GAM

E[yi ]=h(xTi β+f(zi))

AMM

E[yij ]=xTijβ+uTijγi+f(zi)

GAMM

E[yij ]=h(xTijβ+uTijγi+f(zi))

LM: Linear Model

G: Generalized

M: Mixed

A: Additive
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Examples For Further Intricacies

I linear/additive predictor approach can be used to model other
quantities of interest

I proportional hazard/Cox models: λi (t) = λ0(t) exp(xTi β)
I quantile regression: modeling quantiles of the response

distribution

I varying coefficients: β2 I β2(t)
(or depending on other variables than t)

I estimating also the response function h( · ) in GLMs/GAMs

I correcting for measurement errors in the predictors

I p � n (gene expression data: 100 obs. for 500 000 variables)

I functional data (e.g., from mass spectrometry)

I . . .
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Some Estimation Techniques

I least squares (yawn. . . )

I robust methods (L1 regression, . . . )
I maximum likelihood

I AMs: penalized ML
I shrinkage estimators (ridge, lasso, . . . )
I quasi-likelihood / generalized estimation equations (GEE)

I boosting, support vector machine, . . . (from machine learning)

I Bayesian (empirical / full: penalization =̂ prior)

I NPI
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