

Regression Models in Statistics

A Short Guide Through a Set of Abbreviations Containing the Letters L, M, G, and A

Gero Walter

Department of Statistics Ludwig-Maximilians-Universität München (LMU)

September 5th, 2011

Concept and Scope

Linear Regression:

$$y_i = x_i^{\mathsf{T}}\beta + \varepsilon_i \text{ with } \mathsf{E}[\varepsilon_i] = 0, \text{ Var}(\varepsilon_i) = \sigma^2,$$

or
$$\mathsf{E}[y_i] = x_i^{\mathsf{T}}\beta = x_{i1}\beta_1 + x_{i2}\beta_2 + \dots$$

< □ > < 同 >

3 N 3

Concept and Scope

Linear Regression:

$$y_i = x_i^{\mathsf{T}}\beta + \varepsilon_i \text{ with } \mathsf{E}[\varepsilon_i] = 0, \text{ Var}(\varepsilon_i) = \sigma^2,$$

or
$$\mathsf{E}[y_i] = x_i^{\mathsf{T}}\beta = x_{i1}\beta_1 + x_{i2}\beta_2 + \dots$$

- modeling: determine & quantify the influence of each predictor variable x_{i1}, x_{i2}, ... on the response variable y_i
 - tests on estimated regression parameters β_1 , β_2 , ...
 - model / variable selection (separate procedures / simultaneous with estimation)

Concept and Scope

Linear Regression:

$$y_i = x_i^{\mathsf{T}}\beta + \varepsilon_i \text{ with } \mathsf{E}[\varepsilon_i] = 0, \text{ Var}(\varepsilon_i) = \sigma^2,$$

or
$$\mathsf{E}[y_i] = x_i^{\mathsf{T}}\beta = x_{i1}\beta_1 + x_{i2}\beta_2 + \dots$$

- modeling: determine & quantify the influence of each predictor variable x_{i1}, x_{i2}, ... on the response variable y_i
 - tests on estimated regression parameters β_1 , β_2 , ...
 - model / variable selection (separate procedures / simultaneous with estimation)
- prediction of the response variable y_{n+1} given x_{n+1}

 - "supervised learning" in machine learning
 - provide enough model flexibility, but prevent overfitting

Generalizations of Linear Regression LM: Linear Model

$$\mathsf{LM}_{\mathsf{E}[y_i]=x_i^\mathsf{T}\beta}$$

< 日 > < 同 > < 三 > < 三 >

Generalizations of Linear Regression

 $\mathsf{LM}_{\mathsf{E}[y_i]=x_i^\mathsf{T}\beta}$

LM: Linear Model

G: Generalized

$$\frac{\mathsf{GLM}}{\mathsf{E}[y_i] = h(x_i^{\mathsf{T}}\beta)}$$

binary, categorical, ordinal, count data (...) response modeled by response function

Generalizations of Linear Regression

Image: Image:

Generalizations of Linear Regression

< □ > < 同 > < 回 >

Generalizations of Linear Regression

univariate smoothing: z_i has nonlinear influence on y_i . functional form estimated via basis functions approach

< □ > < 同 > < 回 >

Generalizations of Linear Regression

Examples For Further Intricacies

- linear/additive predictor approach can be used to model other quantities of interest
 - proportional hazard/Cox models: $\lambda_i(t) = \lambda_0(t) \exp(x_i^T \beta)$
 - quantile regression: modeling quantiles of the response distribution
- varying coefficients: β₂ → β₂(t)
 (or depending on other variables than t)
- estimating also the response function $h(\cdot)$ in GLMs/GAMs
- correcting for measurement errors in the predictors
- ▶ $p \gg n$ (gene expression data: 100 obs. for 500 000 variables)
- functional data (e.g., from mass spectrometry)

| 4 同 🕨 🖌 🖉 🕨 🔺

Some Estimation Techniques

- least squares (yawn...)
- robust methods (L₁ regression, ...)
- maximum likelihood
 - AMs: penalized ML
 - shrinkage estimators (ridge, lasso, ...)
 - quasi-likelihood / generalized estimation equations (GEE)
- boosting, support vector machine, ... (from machine learning)

Some Estimation Techniques

- least squares (yawn...)
- robust methods (L₁ regression, ...)
- maximum likelihood
 - AMs: penalized ML
 - shrinkage estimators (ridge, lasso, ...)
 - quasi-likelihood / generalized estimation equations (GEE)
- boosting, support vector machine, ... (from machine learning)
- ► Bayesian (empirical / full: penalization = prior)
- NPI