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Linear Regression – Basics

Data: Model:

(
z , X

)
(n×1) (n×p)

z = Xβ + ε

zi = xiβ + ε

= xi1β1 + xi2β2 + . . .+ xipβp + εi

zi obs. i of response (dependent variable,. . . )
(xi1, . . . , xip) =: xi obs. i of regressors j = 1, . . . , p

(independent variables,. . . ) =̂ ith row of X
(β1, . . . , βp) =: β regression coefficients
(ε1, . . . , εk) =: ε stochastic error term ∼ Nk(0, σ2I) (σ2 known)
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Linear Regression — Estimation

I Least Squares (LS) method: minimize
∑n

i=1(zi − xi β)2:

β̂LS = (XTX)−1XTz .

I Maximum Likelihood (ML) method: maximize likelihood
z |β ∼ Nn(Xβ, σ2I) (X non-stochastic) I β̂LS

I Bayesian method: choose prior on β, maximize posterior (take
posterior expected value)

I often: weak prior information
I “objective Bayesian” paradigm:

take “noninformative” prior β ∝ const. I β̂LS
I conjugate prior: convenient choice,

posterior of same parametrical class as prior
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Linear Regression — Standard Conjugate Prior

(see, e.g., O’Hagan (1994))
Called normal regression model in Walter et al. (2007):

take β ∼ Np

(
β(0), σ2Σ(0)

)
(Σ(0) p.d.) ,

then β | z ∼ Np

(
β(1), σ2Σ(1)

)
,

where the updated parameters β(1) and Σ(1) are obtained as

β(1) =
(
XTX + Λ(0)

)−1(
XTz + Λ(0)β(0)

)
Σ(1) =

(
XTX + Λ(0)

)−1
, with Λ(0) = Σ(0)−1

��AA! other conjugate priors possible! ��AA!
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Updating Sets of Conjugate Priors
— Construction of Conjugate Priors

Given sample z of size n whose distribution forms a linear,
canonical exponential familiy (Bernardo and Smith, 1994), i.e.

p(z |ψ) ∝ exp
{
〈ψ, τ(z)〉 − b(ψ)

}
I Conjugate priors can be constructed as follows:

p(ϑ) ∝ exp
{
n(0)
[
〈ψ, y (0)〉 − b(ψ)

]}
I Updating yields then Posterior:

p(ϑ | z) ∝ exp
{
n(1)
[
〈ψ, y (1)〉 − b(ψ)

]}
, where

y (1) =
n(0)y (0) + τ(z)

n(0) + n
and n(1) = n(0) + n .

Gero Walter Generalized Bayesian Estimation of Regression Params 5/21



Linear Regression
Updating Sets of Conjugate Priors

iluck-models for Linear Regression
Concluding Remarks

Construction of Conjugate Priors
Interpretation of Parameters
Method of Quaeghebeur and de Cooman
Generalization: (i)luck-models

Updating Sets of Conjugate Priors
— Interpretation of Parameters

y (0): “main prior parameter”

I For samples from a N(µ, 1), p(µ) is a N(y (0), 1
n(0) )

I For samples from a M(θ), p(θ) is a Dir(n(0), y (0))

(y
(0)
j = tj=̂ prior probability for class j , n(0) = s)

n(0): “prior strength” or “pseudocounts”

With τ(z) =
∑n

i=1 τ(zi ) and τ̃(z) =: 1
n

∑n
i=1 τ(zi ):

y (1) =
n(0)

n(0) + n
· y (0) +

n

n(0) + n
· τ̃(z) .
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Updating Sets of Conjugate Priors
— Method of Quaeghebeur and de Cooman

Construction of imprecise prior: Vary y (0) in a convex set Y(0)

I Prior credal set can contain also all convex mixtures
of distributions with y (0) ∈ Y(0)

I Set Y(1) defining the imprecise posterior is easily derived by

Y(1) =

{
n(0)y (0) + τ(z)

n(0) + n

∣∣∣∣∣ y (0) ∈ Y(0)

}

=
n(0)

n(0) + n
· Y(0) +

n

n(0) + n
· τ̃(z) .

Linearity: Vertices of Y(0) −→ Vertices of Y(1)
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Updating Sets of Conjugate Priors — luck-models

(First) Generalization:

Construction of imprecise prior not dependent on
construction of conjugate prior, the linearity is sufficient.

I Defintion of luck-models (Linearly Updated Conjugate prior

Knowledge): Prior p(ϑ) and posterior p(ϑ | z) such that

p(ϑ) ∝ exp
{
n(0)
[
〈ψ, y (0)〉 − b(ψ)

]}
and

p(ϑ | z) ∝ exp
{
n(1)
[
〈ψ, y (1)〉 − b(ψ)

]}
, where

y (1) =
n(0)

n(0) + n
· y (0) +

n

n(0) + n
· τ̃(z) and n(1) = n(0) + n .
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Updating Sets of Conjugate Priors — (i)luck-models

I Two central properties of luck-models:

i) prior & posterior from same class of parametric distributions

ii) updating of one parameter of the prior (y (0)) is linear.

luck-model with imprecise prior (& posterior) produced by
method of Quaeghebeur and de Cooman (vary y (0) in a set Y(0))

I iluck-model
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iluck-models for Linear Regression
— Standard Conjugate Prior

Theorem (Theorem 2 in Walter et al. (2007))

Fixing a value n(0),
(
p(β), p(β | z)

)
constitutes a luck-model of

size 1 with prior parameters

y (0) =
1

n(0)

(
Λ(0)

Λ(0)β(0)

)
=:

(
y

(0)
a

y
(0)
b

)

and n(0) and sample statistic

τ(z) = τ(X, z) =

(
XTX
XTz

)
=:

(
τa(X, z)
τb(X, z)

)
.

Called Imprecise Normal Regression Model in Walter et al. (2007).
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Standard Conjugate Prior — Construction

β ∼ Np

(
β(0), σ2Σ(0)

)
I p(β) ∝ exp

{
− 1

2σ2

(
β − β(0)

)T
Σ(0)−1

(
β − β(0)

)}
...

∝ exp

{
− 1

2σ2
βT Λ(0) β +

2

2σ2
βT Λ(0)β(0)

}

I ψ =

((
−
βiβj

2σ2

)
i ,j=1,...,p

,
(
− βi

σ2

)
i=1,...,p

)T

y (0) =

((
λ

(0)
ij

n(0)

)
i ,j=1,...,p

,

(
1

n(0)

(
Λ(0)β(0)

)
i

)
i=1,...,p

)
b(ψ) = 0
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Standard Conjugate Prior — pro & contra

arbitary Λ(0) (p.d.) I very flexible correlation structure

n(0) is ‘artificially’ introduced

b(β) = 0 ?!?

y (0) not interpretable
& severe ‘translation’ issues in concrete application
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Standard Conjugate Prior — ‘Translation’ Issues

1. Express prior knowledge on β by a set of β(0)’s and Λ(0)’s.

2. “Translate” this set into set of y (0)’s such that resulting set
Y(0) consists only of admissible combinations of parameters
(positive definiteness of Λ(0), bounding of Y(0) as advocated
by Quaeghebeur and de Cooman).

3. Update each y (0) in Y(0) linearly to y (1).

4. “Retranslate” Y(1) into interpretable set of β(1)’s and Λ(1)’s.

2. highly complex for arbitrary p
I analytical results derived for p = 2 (& further simplifications).
I properties of resulting model very plausible.
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Standard Conjugate Prior — Data Example

airgene: EU financed panel study

air pollutants
?−→ inflammation markers in

myocardial infarction survivors

but:

inflammation markers ←→ BMI (Body-Mass-Index) and age

I must be taken into account to adjust
air pollutants −→ inflammation markers.

Model:

log(fib)i = [β
0
, β0] + agei · [βage, βage] + bmii · [βbmi, βbmi] + εi
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Standard Conjugate Prior — Data Example
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 0.95−credibility region for βage and βbmi with A = [2.94 ; 5.88]
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 Very low ’trust’ in prior information corresponding to 1 − 2 observations 
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iluck-models for Linear Regression
— Another Conjugate Prior

Constructed along the method described in (Bernardo et al, 1994):

‘Standardize’ Data with known σ2: z −→ z

σ
and X −→ X

σ

I f (z |β) ∝ exp

{
1

2

n∑
i=1

(zi − xTi β)2
}

= exp
{1

2
(z − Xβ)T(z − Xβ)

}
...
∝ exp

{
βTXTz︸ ︷︷ ︸

=〈ψ, τ(z)〉

−1

2
βTXTXβ︸ ︷︷ ︸
nb(ψ)

}
I ψ = β ,

τ(z) = XTz , b(ψ) =
1

2n
βTXTXβ
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Other Conjugate Prior — Construction

construction of prior: p(ϑ) ∝ exp
{
n(0)
[
〈ψ, y (0)〉 − b(ψ)

]}
from sample model: p(β) ∝ exp

{
n(0)
[
y (0)Tβ − 1

2n
βTXTXβ

]}
Density of a multivariate normal with mean f (n(0), y (0)) and
inverse covariance matrix S(n(0), y (0)):

p(β) ∝ exp

{
− 1

2

(
β − f ( , )

)T
S( , )

(
β − f ( , )

)}
∝ exp

{
− 1

2
f ( , )TS( , )β +

1

2
βTS( , )β

}
I S(n(0), y (0)) = S(n(0)) =

n(0)

n
XTX ,

f (n(0), y (0)) = f (y (0)) = n (XTX)−1y (0)
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Other Conjugate Prior — How to Proceed

1. fix lower and upper bounds for f (y (0)) based on prior
knowledege on β; n(0) must be chosen fix (→ Friday) and
determines the prior covariance matrix for β:
V(β) = n

n(0) (X
TX)−1;

2. ‘translate’ bounds for f (y (0)) into bounds for y (0) by
y (0) = 1

n (XTX)f (y (0));

3. perform the linear update step on n(0) and the bounds for y (0)

to obtain n(1) and bounds for y (1);

4. ‘retranslate’ the bounds for y (1) into interpretable bounds for
f (y (1)).

As all transformations are linear and no p.d.-safeguarding
necessary, iluck-model calculus (f (Y(0)) −→ f (Y(1))) is easy!
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Other Conjugate Prior — Updating

E[β | z ] = f (y (1))

= n(XTX)−1

(
n(0)

n(0) + n
y (0) +

n

n(0) + n
· 1
n
(XTz)

)

=
n(0)

n(0) + n
· f (y (0)) +

n

n(0) + n
· (XTX)−1XTz︸ ︷︷ ︸

β̂LS

,

V(β | z) =
n

n(1)
(XTX)−1

=
n

n(0) + n
(XTX)−1 .
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Other Conjugate Prior — pro & contra

y (0) not interpretable, but easy transformation

easy updating as weighted average of prior guess and β̂LS

intuitively appealing

no flexible correlation structure for β

V(β) and V(β | z) not interval-valued (fixed n(0)!)
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Concluding Remarks

Presented models for generalized Bayesian estimation of regression
coefficients:

I either flexible covariance structure and difficult calculations

I or fixed covariance structure and easy calculations

Second generalizion: generalized iLUCK-models:
n(0) varying in set N (0) additionally

I see my contribution on Friday
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