

Bayesian Estimation of Linear Regression Parameters with Sets of Conjugate Priors

Gero Walter

Department of Statistics Ludwig-Maximilians-University Munich

May 13th, 2008

Linear Regression – Basics

Data:	Model:
$\begin{pmatrix} z, & \mathbf{X} \end{pmatrix}$ $(n \times 1) (n \times p)$	$z = \mathbf{X}\beta + \varepsilon$ $z_{i} = x_{i}\beta + \varepsilon$ $= x_{i1}\beta_{1} + x_{i2}\beta_{2} + \dots + x_{ip}\beta_{p} + \varepsilon_{i}$
	z_i obs. i of response (dependent variable,)
$(x_{i1},\ldots,x_{ip})=$	$x_i \mid \text{obs. } i \text{ of regressors } j = 1, \dots, p$
	(independent variables,) $\hat{=}$ ith row of X
$(\beta_1,\ldots,\beta_p)=$: β regression coefficients
$(\varepsilon_1,\ldots,\varepsilon_k)=$	$\epsilon : \varepsilon$ stochastic error term $\sim N_k(0, \sigma^2 \mathbf{I}) (\sigma^2 \text{ known})$

Linear Regression — Estimation

▶ Least Squares (LS) method: minimize $\sum_{i=1}^{n} (z_i - x_i \beta)^2$:

$$\hat{\beta}_{LS} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}z.$$

- ▶ Maximum Likelihood (ML) method: maximize likelihood $z \mid \beta \sim N_n(\mathbf{X}\beta, \sigma^2\mathbf{I})$ (**X** non-stochastic) → $\hat{\beta}_{LS}$
- ▶ Bayesian method: choose prior on β , maximize posterior (take posterior expected value)
 - ▶ often: weak prior information → "objective Bayesian" paradigm: take "noninformative" prior $\beta \propto \text{const.}$ → $\hat{\beta}_{IS}$
 - conjugate prior: convenient choice, posterior of same parametrical class as prior

(see, e.g., O'Hagan (1994))

Called normal regression model in Walter et al. (2007):

take
$$\beta \sim N_p \left(\beta^{(0)}, \sigma^2 \mathbf{\Sigma}^{(0)} \right)$$
 $\left(\mathbf{\Sigma}^{(0)} \text{ p.d.} \right),$
then $\beta \mid z \sim N_p \left(\beta^{(1)}, \sigma^2 \mathbf{\Sigma}^{(1)} \right),$

where the updated parameters $eta^{(1)}$ and $oldsymbol{\Sigma}^{(1)}$ are obtained as

$$eta^{(1)} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mathbf{\Lambda}^{(0)}\right)^{-1} \left(\mathbf{X}^{\mathsf{T}}z + \mathbf{\Lambda}^{(0)}\beta^{(0)}\right)$$
 $\mathbf{\Sigma}^{(1)} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mathbf{\Lambda}^{(0)}\right)^{-1}, \quad \text{with } \mathbf{\Lambda}^{(0)} = \mathbf{\Sigma}^{(0)^{-1}}$

Updating Sets of Conjugate Priors

— Construction of Conjugate Priors

Given sample z of size n whose distribution forms a linear, canonical exponential familiy (Bernardo and Smith, 1994), i.e.

$$p(z | \psi) \propto \exp \{ \langle \psi, \tau(z) \rangle - \mathbf{b}(\psi) \}$$

Conjugate priors can be constructed as follows:

$$p(\vartheta) \propto \exp\left\{n^{(0)}\left[\langle \psi, y^{(0)} \rangle - \mathbf{b}(\psi)\right]\right\}$$

Updating yields then Posterior:

$$p(\vartheta \mid z) \propto \exp\left\{n^{(1)}\left[\langle \psi, y^{(1)} \rangle - \mathbf{b}(\psi)\right]\right\},$$
 where

$$y^{(1)} = \frac{n^{(0)}y^{(0)} + \tau(z)}{n^{(0)} + n}$$
 and $n^{(1)} = n^{(0)} + n$.

Updating Sets of Conjugate Priors

— Interpretation of Parameters

 $y^{(0)}$: "main prior parameter"

- ► For samples from a N(μ , 1), $p(\mu)$ is a N($y^{(0)}, \frac{1}{n^{(0)}}$)
- For samples from a M(θ), $p(\theta)$ is a Dir($n^{(0)}, y^{(0)}$) $(y_j^{(0)} = t_j \hat{=} \text{ prior probability for class } j, n^{(0)} = s)$

 $n^{(0)}$: "prior strength" or "pseudocounts"

With
$$\tau(z) = \sum_{i=1}^n \tau(z_i)$$
 and $\tilde{\tau}(z) =: \frac{1}{n} \sum_{i=1}^n \tau(z_i)$:

$$y^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \tilde{\tau}(z).$$

Updating Sets of Conjugate Priors

Method of Quaeghebeur and de Cooman

Construction of *imprecise* prior: Vary $y^{(0)}$ in a convex set $\mathcal{Y}^{(0)}$

- → Prior credal set can contain also all convex mixtures of distributions with $v^{(0)} \in \mathcal{V}^{(0)}$
- \rightarrow Set $\mathcal{Y}^{(1)}$ defining the imprecise posterior is easily derived by

$$\mathcal{Y}^{(1)} = \left\{ \frac{n^{(0)}y^{(0)} + \tau(z)}{n^{(0)} + n} \middle| y^{(0)} \in \mathcal{Y}^{(0)} \right\}$$
$$= \frac{n^{(0)}}{n^{(0)} + n} \cdot \mathcal{Y}^{(0)} + \frac{n}{n^{(0)} + n} \cdot \tilde{\tau}(z).$$

Linearity: Vertices of $\mathcal{Y}^{(0)} \longrightarrow \text{Vertices of } \mathcal{Y}^{(1)}$

Updating Sets of Conjugate Priors — LUCK-models

(First) Generalization:

Construction of imprecise prior not dependent on construction of conjugate prior, the linearity is sufficient.

Defintion of LUCK-models (Linearly Updated Conjugate prior Knowledge): Prior $p(\vartheta)$ and posterior $p(\vartheta \mid z)$ such that

$$p(\vartheta) \propto \exp\left\{n^{(0)}\left[\langle \psi, y^{(0)} \rangle - \mathbf{b}(\psi)\right]\right\}$$
 and $p(\vartheta \mid z) \propto \exp\left\{n^{(1)}\left[\langle \psi, y^{(1)} \rangle - \mathbf{b}(\psi)\right]\right\}$, where

$$y^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \tilde{\tau}(z)$$
 and $n^{(1)} = n^{(0)} + n$.

Updating Sets of Conjugate Priors — (i)LUCK-models

- → Two central properties of LUCK-models:
 - i) prior & posterior from same class of parametric distributions
 - ii) updating of one parameter of the prior $(y^{(0)})$ is linear.

LUCK-model with *imprecise* prior (& posterior) produced by method of Quaeghebeur and de Cooman (vary $y^{(0)}$ in a set $\mathcal{Y}^{(0)}$)

iLUCK-models for Linear Regression — Standard Conjugate Prior

Theorem (Theorem 2 in Walter et al. (2007))

Fixing a value $n^{(0)}$, $(p(\beta), p(\beta | z))$ constitutes a LUCK-model of size 1 with prior parameters

$$y^{(0)} = \frac{1}{n^{(0)}} \begin{pmatrix} \mathbf{\Lambda}^{(0)} \\ \mathbf{\Lambda}^{(0)} \beta^{(0)} \end{pmatrix} =: \begin{pmatrix} y_a^{(0)} \\ y_b^{(0)} \end{pmatrix}$$

and $n^{(0)}$ and sample statistic

$$au(z) = au(\mathbf{X}, z) = \begin{pmatrix} \mathbf{X}^\mathsf{T}\mathbf{X} \\ \mathbf{X}^\mathsf{T}z \end{pmatrix} =: \begin{pmatrix} au_a(\mathbf{X}, z) \\ au_b(\mathbf{X}, z) \end{pmatrix}.$$

Called Imprecise Normal Regression Model in Walter et al. (2007).

Standard Conjugate Prior — Construction

$$\beta \sim \mathsf{N}_{p} \left(\beta^{(0)}, \sigma^{2} \mathbf{\Sigma}^{(0)} \right)$$

$$\Rightarrow p(\beta) \propto \exp \left\{ -\frac{1}{2\sigma^{2}} \left(\beta - \beta^{(0)} \right)^{\mathsf{T}} \mathbf{\Sigma}^{(0)-1} \left(\beta - \beta^{(0)} \right) \right\}$$

$$\vdots$$

$$\propto \exp \left\{ -\frac{1}{2\sigma^{2}} \beta^{\mathsf{T}} \mathbf{\Lambda}^{(0)} \beta + \frac{2}{2\sigma^{2}} \beta^{\mathsf{T}} \mathbf{\Lambda}^{(0)} \beta^{(0)} \right\}$$

$$\Rightarrow \psi = \left(\left(-\frac{\beta_{i} \beta_{j}}{2\sigma^{2}} \right)_{i,j=1,\dots,p}, \left(-\frac{\beta_{i}}{\sigma^{2}} \right)_{i=1,\dots,p} \right)^{\mathsf{T}}$$

$$y^{(0)} = \left(\left(\frac{\lambda_{ij}^{(0)}}{n^{(0)}} \right)_{i,j=1,\dots,p}, \left(\frac{1}{n^{(0)}} \left(\mathbf{\Lambda}^{(0)} \beta^{(0)} \right)_{i} \right)_{i=1,\dots,p} \right)$$

$$\mathbf{b}(\psi) = 0$$

Standard Conjugate Prior — pro & contra

+ arbitary $\Lambda^{(0)}$ (p.d.) → very flexible correlation structure

- $n^{(0)}$ is 'artificially' introduced
- **b**(β) = 0 ?!?
- y⁽⁰⁾ not interpretable
 & severe 'translation' issues in concrete application

- 1. Express prior knowledge on β by a set of $\beta^{(0)}$'s and $\Lambda^{(0)}$'s.
- 2. "Translate" this set into set of $y^{(0)}$'s such that resulting set $\mathcal{Y}^{(0)}$ consists only of admissible combinations of parameters (positive definiteness of $\mathbf{\Lambda}^{(0)}$, bounding of $\mathcal{Y}^{(0)}$ as advocated by Quaeghebeur and de Cooman).
- 3. Update each $y^{(0)}$ in $\mathcal{Y}^{(0)}$ linearly to $y^{(1)}$.
- 4. "Retranslate" $\mathcal{Y}^{(1)}$ into interpretable set of $\beta^{(1)}$'s and $\Lambda^{(1)}$'s.
- 2. highly complex for arbitrary *p*
 - \rightarrow analytical results derived for p=2 (& further simplifications).
 - properties of resulting model very plausible.

Standard Conjugate Prior — Data Example

AIRGENE: EU financed panel study

$$\begin{array}{ccc} \text{air pollutants} & \stackrel{?}{\longrightarrow} & \begin{array}{c} \text{inflammation markers in} \\ \text{myocardial infarction survivors} \end{array}$$

but:

inflammation markers
$$\ensuremath{\longleftrightarrow}$$
 BMI (Body-Mass-Index) and age

→ must be taken into account to adjust air pollutants → inflammation markers.

Model:

$$\log(\mathtt{fib})_i = [\underline{\beta}_0,\,\overline{\beta}_0] + \mathtt{age}_i \cdot [\underline{\beta}_{\mathtt{age}},\,\overline{\beta}_{\mathtt{age}}] + \mathtt{bmi}_i \cdot [\underline{\beta}_{\mathtt{bmi}},\,\overline{\beta}_{\mathtt{bmi}}] + \varepsilon_i$$

Standard Conjugate Prior — Data Example

0.95-credibility region for β_{age} and β_{bmi} with A = [2.94; 5.88]

Very low 'trust' in prior information corresponding to 1 – 2 observations

iLUCK-models for Linear Regression

— Another Conjugate Prior

Constructed along the method described in (Bernardo et al, 1994):

'Standardize' Data with known
$$\sigma^2$$
: $z \longrightarrow \frac{z}{\sigma}$ and $X \longrightarrow \frac{X}{\sigma}$

$$f(z \mid \beta) \propto \exp\left\{\frac{1}{2} \sum_{i=1}^{n} (z_{i} - x_{i}^{\mathsf{T}} \beta)^{2}\right\}$$

$$= \exp\left\{\frac{1}{2} (z - \mathbf{X}\beta)^{\mathsf{T}} (z - \mathbf{X}\beta)\right\}$$

$$\vdots$$

$$\propto \exp\left\{\underbrace{\beta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} z}_{=\langle \psi, \tau(z) \rangle} \underbrace{-\frac{1}{2} \beta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}\beta}_{n\mathbf{b}(\psi)}\right\}$$

$$\psi = \beta,$$

$$\tau(z) = \mathbf{X}^{\mathsf{T}} z, \qquad \mathbf{b}(\psi) = \frac{1}{2n} \beta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}\beta$$

Other Conjugate Prior — Construction

construction of prior:
$$p(\vartheta) \propto \exp \left\{ n^{(0)} \left[\langle \psi, y^{(0)} \rangle - \mathbf{b}(\psi) \right] \right\}$$

from sample model:
$$p(\beta) \propto \exp\left\{n^{(0)} \left[y^{(0)^{\mathsf{T}}} \beta - \frac{1}{2n} \beta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \beta\right]\right\}$$

Density of a multivariate normal with mean $f(n^{(0)}, y^{(0)})$ and inverse covariance matrix $\mathbf{S}(n^{(0)}, y^{(0)})$:

$$p(\beta) \propto \exp\left\{-\frac{1}{2}(\beta - f(\,,\,))^{\mathsf{T}}\mathbf{S}(\,,\,)(\beta - f(\,,\,))\right\}$$
$$\propto \exp\left\{-\frac{1}{2}f(\,,\,)^{\mathsf{T}}\mathbf{S}(\,,\,)\beta + \frac{1}{2}\beta^{\mathsf{T}}\mathbf{S}(\,,\,)\beta\right\}$$

$$\mathbf{S}(n^{(0)}, y^{(0)}) = \mathbf{S}(n^{(0)}) = \frac{n^{(0)}}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X},$$

$$f(n^{(0)}, y^{(0)}) = f(y^{(0)}) = n(\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} y^{(0)}$$

Other Conjugate Prior — How to Proceed

- 1. fix lower and upper bounds for $f(y^{(0)})$ based on prior knowledege on β ; $n^{(0)}$ must be chosen fix (\rightarrow Friday) and determines the prior covariance matrix for β : $\mathbb{V}(\beta) = \frac{n}{n^{(0)}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1};$
- 2. 'translate' bounds for $f(y^{(0)})$ into bounds for $y^{(0)}$ by $y^{(0)} = \frac{1}{n}(\mathbf{X}^T\mathbf{X})f(y^{(0)});$
- 3. perform the linear update step on $n^{(0)}$ and the bounds for $y^{(0)}$ to obtain $n^{(1)}$ and bounds for $y^{(1)}$;
- 4. 'retranslate' the bounds for $y^{(1)}$ into interpretable bounds for $f(y^{(1)})$.

As all transformations are linear and no p.d.-safeguarding necessary, iLUCK-model calculus $(f(\mathcal{Y}^{(0)}) \longrightarrow f(\mathcal{Y}^{(1)}))$ is easy!

Other Conjugate Prior — Updating

$$\mathbb{E}[\beta \mid z] = f(y^{(1)})$$

$$= n(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \left(\frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{1}{n} (\mathbf{X}^{\mathsf{T}} z) \right)$$

$$= \frac{n^{(0)}}{n^{(0)} + n} \cdot f(y^{(0)}) + \frac{n}{n^{(0)} + n} \cdot \underbrace{(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} z}_{\hat{\beta}_{LS}},$$

$$\mathbb{V}(\beta \mid z) = \frac{n}{n^{(1)}} (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$$

$$= \frac{n}{n^{(0)} + n} (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}.$$

- $+ y^{(0)}$ not interpretable, but easy transformation
- ullet easy updating as weighted average of prior guess and \hat{eta}_{LS} intuitively appealing

- no flexible correlation structure for β
- $\mathbb{V}(\beta)$ and $\mathbb{V}(\beta \mid z)$ not interval-valued (fixed $n^{(0)}$!)

Concluding Remarks

Presented models for generalized Bayesian estimation of regression coefficients:

- either flexible covariance structure and difficult calculations
- or fixed covariance structure and easy calculations

Second generalizion: generalized iLUCK-models: $n^{(0)}$ varying in set $\mathcal{N}^{(0)}$ additionally

see my contribution on Friday