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Basics
Estinr

Linear Regression — Basics

Stand ugate Prior

Data: Model:

z = XB+e¢
zi = xf+e
= X1+ Xx2f2+ ...+ XipBp +€i

(z, X)
(nx1)  (nxp)

z; | obs. i of response (dependent variable,...)
(Xi1,---,Xip) =: X; | obs. i of regressors j =1,...,p
(independent variables,...) = ith row of X
(B1,...,8p) =: B | regression coefficients
(¢1,...,ex) =: € | stochastic error term ~ Ny (0, ?l) (¢ known)

™
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SEEe
Estima

Standard Conjugate Prior

Linear Regression — Estimation

> Least Squares (LS) method: minimize -7, (z; — x; 3)*:
Bus = OX0X) X2

» Maximum Likelihood (ML) method: maximize likelihood
z| B ~ Np(XB,021) (X non-stochastic) =+ (5
» Bayesian method: choose prior on 3, maximize posterior (take
posterior expected value)
» often: weak prior information
=p “objective Bayesian” paradigm:
take “noninformative” prior 8 oc const. = BLS
» conjugate prior: convenient choice,
posterior of same parametrical class as prior
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SEEe
Estimation

Linear Regression — Standard Conjugate Prior

(see, e.g., O'Hagan (1994))
Called normal regression model in Walter et al. (2007):

Standard Conjugate Prior

take  B~N, (5(0),022(0)) (=@ p.d),
then [z~ N, (ﬁ(l),a22(1)> ,

where the updated parameters 3(1) and £(1) are obtained as
30 — (xTx n /\<°>)_1(xTz L A© 5(0))

£O = (XX +AO) 7 with AO = O

/\ other conjugate priors possible! A
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Construction of Conjugate Priors

Updating Sets of Conjugate Priors
— Construction of Conjugate Priors

Given sample z of size n whose distribution forms a linear,
canonical exponential familiy (Bernardo and Smith, 1994), i.e

p(z|¥) o exp { (¥, 7(2)) — b(¥)}

=p Conjugate priors can be constructed as follows:
p(9) o< exp {0 (1, y @) — b()] }

=p Updating yields then Posterior:
p(9]2) oc exp {nM [(1, yV) —b()]},  where

(1) . n(o)y(o) _|_ T(Z)

(1) — ,(0)
"+ n and nt =n\Y +n.

y
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Updating Sets of Conjugate Priors
— Interpretation of Parameters

y©): “main prior parameter”

» For samples from a N(u, 1), p(x) is a N(y(9, ﬁ)

» For samples from a M(8), p(@) is a Dir(n(o),y(o))

(yj(o) = t;= prior probability for class j, n(®) = s)

n(®: “prior strength” or “pseudocounts”

With 7(z) = 37, 7(z) and #(z) = L 27 | 7(z):
n(©) n

R (*) T L
y +n(0)+n 7(2).
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Method of Quaeghebeu nd de Cooman
: (i)LucK-models

Updating Sets of Conjugate Priors
— Method of Quaeghebeur and de Cooman

Construction of imprecise prior: Vary y(© in a convex set )0
=» Prior credal set can contain also all convex mixtures
of distributions with y(®) e Y(©)

—» Set V(1) defining the imprecise posterior is easily derived by

) — {M O ¢ y(o)}

n + n
n(©) n
R 1 (¢) I
) 4 p Yo+ n©) + pn 7(2).

Linearity: Vertices of y(o) — Vertices of y(l)
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Updating Sets of Conjugate Priors — LUCK-models

(First) Generalization:

Construction of imprecise prior not dependent on
construction of conjugate prior, the linearity is sufficient.

i=p Defintion of LUCK-models (Linearly Updated Conjugate prior
Knowledge): Prior p(1)) and posterior p(¢ | z) such that

p(9) o< exp {n(o)[ y(°)> —b()]} and
p(92) oc exp {nW [(,yM) —b()]},  where

n(0) n

(1) — ()
y A= &

F (1) — (0
O 7(z) and n n" +n.
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Updating Sets of Conjugate Priors — (i)LUCK-models

=» Two central properties of LUCK-models:

i) prior & posterior from same class of parametric distributions

ii) updating of one parameter of the prior (y(9)) is linear.

LUCK-model with imprecise prior (& posterior) produced by
method of Quaeghebeur and de Cooman (vary y(® in a set Y(9))

—p

iLUCK-model
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Standard

Another C

ILUCK-models for Linear Regression
— Standard Conjugate Prior

Theorem (Theorem 2 in Walter et al. (2007))

Fixing a value n®), (p(B), p(8|z)) constitutes a LUCK-model of
size 1 with prior parameters

©_ L ( AO ) (D
YUT @ Ao ) 70
and n©® and sample statistic
B - XX | 1a(X,2)
T(z) =7(X,z) = ( X ) =: ( (X, 7) ) .

Called Imprecise Normal Regression Model in Walter et al. (2007).




Standard Conjugate Prior

Standard Conjugate Prior — Construction

Another Conjugate Prior

B~ N, (5(0)702};(0))
> p(B) xexp {—% (8- 50) £O7* (5 5) }

: 1 2
x exp {%2@ O 2T Aw)gw)}

" _ T
~ o= (3 )

(0)

AN 1

ij A0 300)
(”(0)>iJ_1,...,p ’<”(0)( v >f i=1,...p
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Another Cor

Standard Conjugate Prior — pro & contra

+ arbitary A©) (p.d.) = very flexible correlation structure

= n© s ‘artificially’ introduced
= b(3)=077
= y(® not interpretable
& severe ‘translation’ issues in concrete application
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Standard Conjugate Prior
Pri

Another C

Standard Conjugate Prior — ‘Translation’ Issues

1. Express prior knowledge on /3 by a set of 3(9)'s and A9)’s,

2. “Translate” this set into set of y(9)'s such that resulting set
Y consists only of admissible combinations of parameters
(positive definiteness of NO), bounding of V() as advocated
by Quaeghebeur and de Cooman).

3. Update each y(© in Y linearly to y(1).

4. “Retranslate” y(1> into interpretable set of 3(1)'s and A1)’s,

2. highly complex for arbitrary p
= analytical results derived for p = 2 (& further simplifications).
= properties of resulting model very plausible.
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Standard Conjugate Prior — Data Example

AIRGENE: EU financed panel study

. ? inflammation markers in
air pollutants — . . .
myocardial infarction survivors
but:
inflammation markers «— BMI (Body-Mass-Index) and age
=p must be taken into account to adjust
air pollutants — inflammation markers.

Model:
IOg(fib),’ = [@0’ BO] + age; - [éage’ Eage] + bmi; - [ﬁ

bmi

) Ebmi] +¢&i
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Standard Conjugate Prior
LMU u s Another Conjugate o
i

Standard Conjugate Prior — Data Example

0.95-credibility region for Bage and Bom; with A = [2.94 ; 5.88]

Bomi
0.010 0.015 0.020 0.025
1 1

0.005

0.000

T T T T T T
-0.005 0.000 0.005 0.010 0.015 0.020

Bage

Very low ‘trust’ in prior information corresponding to 1 — 2 observations
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ILUCK-models for Linear Regression
— Another Conjugate Prior

Constructed along the method described in (Bernardo et al, 1994):

z
2.z Zand X — =

g

‘Standardize’ Data with known o
1 n

— felmxen]; Y @ -0
i=1

= exp {5z~ X0 (2~ X9)}

: 1
o exp { FX 2 —EﬁTXTXﬁ}
——

- =5
r(2) = X'z, b(v) = 5 T XTX5
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Standard Conjugate Prior

Other Conjugate Prior — Construction

Another Conjugate Prior

construction of prior:  p() o exp {n(o) [(1/1,)/(0)) —b(¥)] }
from sample model: p(3) o exp {n(o) [y(o)Tﬁ - %ETXTXB]}
n

Density of a multivariate normal with mean f(n(®, y(9)) and
inverse covariance matrix S(n(%), y(9)):

o) e { — 3 (- 7)) s (3- 7)) |
cep ~ 57 TS( )5+ 507S( )3

n(0)
= S(n©, ) =5(n®) = — XX,
F(n®, y©@) = £(y®) = n(XX) 1y
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Standard Conjugate Prior

Other Conjugate Prior — How to Proceed

Another Conjugate Prior

1. fix lower and upper bounds for f(y(o)) based on prior
knowledege on 3; n(®) must be chosen fix (— Friday) and
determines the prior covariance matrix for (3:

V() = & (XX)~;

2. ‘translate’ bounds for f(y(%9)) into bounds for y(%) by
yO = L(XX)F(y(O);

3. perform the linear update step on n(®) and the bounds for y(%)
to obtain n(!) and bounds for y():

4. ‘retranslate’ the bounds for y(1) into interpretable bounds for
Fy™M).

As all transformations are linear and no p.d.-safeguarding
necessary, iLUCK-model calculus (f(Y(©) — £(Y(1)) is easy!
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Standard Conjugate Prior

Another Conjugate Prior

Other Conjugate Prior — Updating

E[5]2] = f(yV)

_ (0) n Ty \—1yT
n© + n f(y )+ © 1 n (XX) Xz,
s
n _
V(ﬂlz):ﬁ(XTX) !
_ n Ty —1
O n(X X)
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Other Conjugate Prior — pro & contra

+ y(© not interpretable, but easy transformation

+ easy updating as weighted average of prior guess and BALS
intuitively appealing

= no flexible correlation structure for 3
— V() and V(8| z) not interval-valued (fixed n(®1)
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Concluding Remarks

Presented models for generalized Bayesian estimation of regression
coefficients:

» either flexible covariance structure and difficult calculations

» or fixed covariance structure and easy calculations

Second generalizion: generalized iLL.U CK-models:
n(©) varying in set NV(®) additionally
= see my contribution on Friday
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