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> given: a set of observations (team won 12 out of 16 matches)
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additional to observations, we have strong prior information
(we are convinced that P(win) should be around 0.75)

> we are, e.g., interested in (predictive) probability P that team
wins in the next match
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Introduction

Prior-Data Conflict

» Bernoulli observations: 0/1 observations (team wins no/yes)
> given: a set of observations (team won 12 out of 16 matches)

> additional to observations, we have strong prior information
(we are convinced that P(win) should be around 0.75)

> we are, e.g., interested in (predictive) probability P that team
wins in the next match

» standard statistical model for this situation:
Beta-Bernoulli/Binomial Model
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Beta-Bernoulli/Binomial Model (BBM)

» Beta prior on p = P(win)
» here in parameterization used, e.g., by Walley (1991):
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» Beta prior on p = P(win)
» here in parameterization used, e.g., by Walley (1991):

Data: | s ~ Binom(p,n)
p ~ Beta(n(o), y(O))
posterior: ‘ pls ~ Beta(n("), y(n))

conjugate prior:
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no conflict:

prior n(®) =8, y(©) =0.75
data s/n=12/16 = 0.75
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Beta-Bernoulli/Binomial Model (BBM)

v resp. (")
00 02 04 06 08 1.0

12 out of 16

10 15 20

n(© resp. n("

25

no conflict:
prior n(®) =8, y(©) =0.75
data s/n=12/16 = 0.75

v
n(M =24, (" =0.75

prior-data conflict:

prior n(® =8, y(0) =0.25
datas/n=16/16 =1
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Beta-Bernoulli/Binomial Model (BBM)
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Prior-Data Conflict = situation in which. ..

> ...informative prior beliefs and trusted data (sampling model
correct, no outliers, etc.) are in conflict.

» “...the prior [places] its mass primarily on distributions in the
sampling model for which the observed data is surprising.”
(Evans & Moshonov, 2006)

> ...there are not enough data to overrule the prior.

We should notice prior-data conflict in the posterior.
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» “...the prior [places] its mass primarily on distributions in the
sampling model for which the observed data is surprising.”
(Evans & Moshonov, 2006)

> ...there are not enough data to overrule the prior.

We should notice prior-data conflict in the posterior.

(0)
_ i __"N 0 n__.s
Elp sl =» _n(o)—l—ny +n(°)+n n

= Conflict between prior and data is just averaged out!

y"(1 - y)
n(m +1

=p does not change systematically with prior-data_conflict!
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Prior-Data Conflict

Prior-Data Conflict & Conjugate Priors

Weighted average structure is underneath all common conjugate
priors for exponential family sampling distributions!

id |. . . S
X ~ linear, canonical exponential family, i.e.

p(x | 0) oc exp { (1), 7(x)) — nb(v))} [w transformation of 9}

=) conjugate prior: p(v) o< exp {n(o) [(d),y(0)> —b(¥)]}
—> (conjugate) posterior: p(¢ | x) o< exp {n” [(v, y() —b()]},
n(© n 7(x)

Y () L A (n) — ,(0)
) 3% +n(0)+n - and n n\“) +n.
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Why Generalize Bayesian Inference?

Assigning a certain prior distribution on p
<> Defining a conglomerate of probability statements (on p).

Bayesian theory lacks the ability to specify the degree of
uncertainty in these probability statements.
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Basic Idea

Why Generalize Bayesian Inference?

Assigning a certain prior distribution on p
<> Defining a conglomerate of probability statements (on p).

Bayesian theory lacks the ability to specify the degree of
uncertainty in these probability statements.

Variance or stretch of a distribution for describing uncertainty?

= Does not work in the case of prior-data conflict:
In conjugate updating, the posterior variance does not depend
on the degree of prior-data conflict in most cases.

=» How to express the precision of a probability statement?
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Generalized Bayesian Inference — Basic Idea

Use set of priors = base inferences on set of posteriors
obtained by element-wise updating
= numbers become intervals:

Elp] =» [E[p], E[p]]
P(peA) =» [P(pcA), P(pcA)]
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Generalized Bayesian Inference — Basic Idea

Use set of priors = base inferences on set of posteriors
obtained by element-wise updating
= numbers become intervals:

Elp] => [Elp]. Elp]]
P(pcA) =» [P(peA), P(peA)]

Shorter intervals <=» more precise probability statements

= differentiate between
» stochastic uncertainty (“risk”) vs.

> non-stochastic uncertainty (“ambiguity”)
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> sets of distributions induced by sets of parameters:
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» convexity needed for consistency properties (“coherence”)

> sets of distributions induced by sets of parameters:
not necessarily convex

> take convex hull of these parametric distributions:
credal set = finite convex mixtures of parametric distributions

» prior/posterior credal set: convex hull of distributions
induced by prior/posterior parameter set
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Inner Workings

» convex sets of distributions ( “credal sets")
» convexity needed for consistency properties (“coherence”)

> sets of distributions induced by sets of parameters:
not necessarily convex

> take convex hull of these parametric distributions:
credal set = finite convex mixtures of parametric distributions

» prior/posterior credal set: convex hull of distributions
induced by prior/posterior parameter set

» pictures show parameter sets (that need not be convex)
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Properties

Works for any canonical exponential family sampling distribution!
= generalized iLUCK models, Walter & Augustin (2009)
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X~ N(p1, 1) = 1~ N(y©, L)

Set of priors: y(o)e [3;4] and n©® e [1;25] Set of posteriors: y“)e [3.29;4] and nMe [11;35]
S .
32+ 32+
o | A4 o |
< T =T T T T T < T T T T T T
0 2 4 _ 6 8 10 0 2 4 G 8 10
Observation T(x) = X = 4 withn = 10 U of posterior HD(0.95) intervals = [2.95;4.59]
Set of priors: y(o)e [3;4] and n©® e [1;25] Set of posteriors:yme [4.43;7.64] and nMe [11;35]
ST o
R 52 -
o | Y o | V4
< T =T T T T T < T T T T T T
0 10 8 10

0 2 4 6
U of posterior HD(0.95) intervals = [4.1;8.23]
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Inner Workings, Properties

Works for any canonical exponential family sampling distribution!
= generalized iLUCK-models, Walter & Augustin (2009)

» n(© governs precision of posterior:
n©) 4+ <= precision]
» n — oo: consistency (y(") set reduces to a point at 7(x)/n)
> y(O) stretch 1 <= y(") stretch t
» inferences should be linear in posterior distributions:
then min/max are attained at the parametric distributions

(these are the extreme points of the credal set);
E, Var are linear in the parametric distributions.
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Inner Workings, Properties

Works for any canonical exponential family sampling distribution!
= generalized iLUCK-models, Walter & Augustin (2009)

» n(© governs precision of posterior:
n©) 4+ <= precision]
» n — oco: consistency (y(") set reduces to a point at 7(x)/n)
> y(O) stretch 1 <= y(") stretch t
» inferences should be linear in posterior distributions:
then min/max are attained at the parametric distributions

(these are the extreme points of the credal set);
E, Var are linear in the parametric distributions.

> reaction to prior-data conflict due to different ‘updating
speeds’ depending on n(®: (") moves “faster” for low n(®)
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but generally any shape possible
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but generally any shape possible

> posterior parameter sets are not rectangular anyway
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prior shape influences the posterior inferences
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shape can be taylored to enable desired inference properties
(e.g. bonus precision if prior and data agree especially well)
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but generally any shape possible

> posterior parameter sets are not rectangular anyway
» prior shape influences the posterior inferences

» shape can be taylored to enable desired inference properties
(e.g. bonus precision if prior and data agree especially well)

» for more complex shapes, elicitation becomes more difficult
» take two y(%) intervals at two different n(®) values?

Bayesian Inference with Sets of Conjugate Priors 15/15



	Introduction
	Bernoulli Data
	Beta-Bernoulli/Binomial Model (BBM)
	Prior-Data Conflict

	Generalized Bayesian Inference
	Basic Idea
	pdc-Imprecise BBM (pdc-IBBM)
	Inner Workings, Properties

	Open Ends/Challenges

