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Introduction

I Bernoulli observations: 0/1 observations (team wins no/yes)

I given: a set of observations (team won 12 out of 16 matches)

I additional to observations, we have strong prior information
(we are convinced that P(win) should be around 0.75)

I we are, e.g., interested in (predictive) probability P that team
wins in the next match

I standard statistical model for this situation:
Beta-Bernoulli/Binomial Model
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Beta-Bernoulli/Binomial Model (BBM)

I Beta prior on p = P(win)

I here in parameterization used, e.g., by Walley (1991):

Data : s ∼ Binom(p, n)

conjugate prior: p ∼ Beta(n(0), y (0))

posterior: p | s ∼ Beta(n(n), y (n))

y (n) =
n(0)

n(0) + n
· y (0) +

n

n(0) + n
· s

n
, n(n) = n(0) + n

y (n) = E[p | s] = P Var(p | s) =
y (n)(1− y (n))

n(n) + 1
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Beta-Bernoulli/Binomial Model (BBM)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y
(0

)
re

sp
.

y
(n

)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y
(0

)
re

sp
.

y
(n

) 12 out of 16

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y
(0

)
re

sp
.

y
(n

) 12 out of 16

16 out of 16

no conflict:

prior n(0) = 8, y (0) = 0.75
data s/n = 12/16 = 0.75

H

n(n) = 24, y (n) = 0.75
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Prior-Data Conflict =̂ situation in which. . .
I . . . informative prior beliefs and trusted data (sampling model

correct, no outliers, etc.) are in conflict.

I “. . . the prior [places] its mass primarily on distributions in the
sampling model for which the observed data is surprising.”
(Evans & Moshonov, 2006)

I . . . there are not enough data to overrule the prior.

We should notice prior-data conflict in the posterior.

E[p | s] = y (n) =
n(0)

n(0) + n
· y (0) +

n

n(0) + n
· s

n

I Conflict between prior and data is just averaged out!

Var(p | s) =
y (n)(1− y (n))

n(n) + 1
, n(n) = n(0) + n

I does not change systematically with prior-data conflict!
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Prior-Data Conflict & Conjugate Priors
Weighted average structure is underneath all common conjugate
priors for exponential family sampling distributions!

X
iid∼ linear, canonical exponential family, i.e.

p(x | θ) ∝ exp
{
〈ψ, τ(x)〉 − nb(ψ)

} [
ψ transformation of θ

]

I conjugate prior: p(ψ) ∝ exp
{

n(0)
[
〈ψ, y (0)〉 − b(ψ)

]}
I (conjugate) posterior: p(ψ | x) ∝ exp

{
n(n)

[
〈ψ, y (n)〉 − b(ψ)

]}
,

where y (n) =
n(0)

n(0) + n
· y (0) +

n

n(0) + n
· τ(x)

n
and n(n) = n(0) + n .
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Generalized Bayesian Inference

Open Ends/Challenges

Basic Idea
pdc-Imprecise BBM (pdc-IBBM)
Inner Workings, Properties

Why Generalize Bayesian Inference?

Assigning a certain prior distribution on p
J I Defining a conglomerate of probability statements (on p).

Bayesian theory lacks the ability to specify the degree of
uncertainty in these probability statements.

Variance or stretch of a distribution for describing uncertainty?

I Does not work in the case of prior-data conflict:
In conjugate updating, the posterior variance does not depend
on the degree of prior-data conflict in most cases.

I How to express the precision of a probability statement?
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Inner Workings, Properties

Generalized Bayesian Inference — Basic Idea

Use set of priors I base inferences on set of posteriors
obtained by element-wise updating

I numbers become intervals:

E[p] I
[
E[p], E[p]

]
P(p∈A) I

[
P(p∈A), P(p∈A)

]

Shorter intervals J I more precise probability statements

I differentiate between

I stochastic uncertainty (“risk”) vs.

I non-stochastic uncertainty (“ambiguity”)
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pdc-Imprecise BBM (pdc-IBBM): Walley 1991, Ch.5.4.3
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prior-data conflict:

prior n(0) ∈ [4, 8], y (0) ∈ [0.2, 0.3]
data s/n = 16/16 = 1

H
“banana” shape
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Inner Workings

I convex sets of distributions (“credal sets”)

I convexity needed for consistency properties (“coherence”)

I sets of distributions induced by sets of parameters:
not necessarily convex

I take convex hull of these parametric distributions:
credal set = finite convex mixtures of parametric distributions

I prior/posterior credal set: convex hull of distributions
induced by prior/posterior parameter set

I pictures show parameter sets (that need not be convex)
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Properties

Works for any canonical exponential family sampling distribution!
I generalized iLUCK models, Walter & Augustin (2009)
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Properties

Works for any canonical exponential family sampling distribution!
I generalized iLUCK-models, Walter & Augustin (2009)

I n(0) governs precision of posterior:
n(0) ↑ J I precision↓

I n→∞: consistency (y (n) set reduces to a point at τ(x)/n)

I y (0) stretch ↑ J I y (n) stretch ↑
I inferences should be linear in posterior distributions:

then min/max are attained at the parametric distributions
(these are the extreme points of the credal set);
E, Var are linear in the parametric distributions.

I reaction to prior-data conflict due to different ‘updating
speeds’ depending on n(0): y (n) moves “faster” for low n(0)
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Generalized Bayesian Inference
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Open Ends/Challenges

I rectangular prior set (two-dimensional interval) seems natural,
but generally any shape possible

I posterior parameter sets are not rectangular anyway

I prior shape influences the posterior inferences

I shape can be taylored to enable desired inference properties
(e.g. bonus precision if prior and data agree especially well)

I for more complex shapes, elicitation becomes more difficult

I take two y (0) intervals at two different n(0) values?
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