

 QQ

Bayesian Inference with Sets of Conjugate Priors

Gero Walter

Department of Statistics Ludwig-Maximilians-Universität München (LMU)

June 29th, 2012

 $\mathbf{A} = \mathbf{A}$, $\mathbf{B} = \mathbf{A}$

[Bernoulli Data](#page-2-0) [Beta-Bernoulli/Binomial Model \(BBM\)](#page-7-0)

メロメ メタメ メミメ メミメー

Þ

 299

 299

Introduction

Bernoulli observations: $0/1$ observations (team wins no/yes)

イロン イ母ン イヨン イヨン

 QQ

Introduction

- **Bernoulli observations:** $0/1$ observations (team wins no/yes)
- \triangleright given: a set of observations (team won 12 out of 16 matches)

 $\langle \vert \bar{H} \vert \rangle$ \rightarrow $\langle \vert \bar{H} \vert \rangle$ \rightarrow $\langle \vert \bar{H} \vert \rangle$

つくい

Introduction

- **Bernoulli observations:** $0/1$ observations (team wins no/yes)
- given: a set of observations (team won 12 out of 16 matches)
- additional to observations, we have strong prior information (we are convinced that $P(\text{win})$ should be around 0.75)

K 何 ▶ 【 手 ▶

Introduction

- **Bernoulli observations:** $0/1$ observations (team wins no/yes)
- \triangleright given: a set of observations (team won 12 out of 16 matches)
- additional to observations, we have strong prior information (we are convinced that $P(\text{win})$ should be around 0.75)
- \triangleright we are, e.g., interested in (predictive) probability P that team wins in the next match

→ 何 ▶ → 手 ▶

Introduction

- **Bernoulli observations:** $0/1$ observations (team wins no/yes)
- \triangleright given: a set of observations (team won 12 out of 16 matches)
- \blacktriangleright additional to observations, we have strong prior information (we are convinced that $P(\text{win})$ should be around 0.75)
- \triangleright we are, e.g., interested in (predictive) probability P that team wins in the next match
- \triangleright standard statistical model for this situation: Beta-Bernoulli/Binomial Model

→ 伊 ▶ → 手 ▶ →

つへへ

Beta-Bernoulli/Binomial Model (BBM)

- Beta prior on $p = P(\text{win})$
- here in parameterization used, e.g., by Walley (1991):

メロメ メ母メ メミメ メミメ

Beta-Bernoulli/Binomial Model (BBM)

- Beta prior on $p = P(\text{win})$
- \blacktriangleright here in parameterization used, e.g., by Walley (1991):

$$
y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \qquad n^{(n)} = n^{(0)} + n
$$

∢ 何 ▶ . ∢ 手 ▶ . ∢ 手

Beta-Bernoulli/Binomial Model (BBM)

- Beta prior on $p = P(\text{win})$
- \blacktriangleright here in parameterization used, e.g., by Walley (1991):

$$
y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \qquad n^{(n)} = n^{(0)} + n
$$

$$
y^{(n)} = E[p \mid s] \qquad \text{Var}(p \mid s) = \frac{y^{(n)}(1 - y^{(n)})}{n^{(n)} + 1}
$$

∢ 何 ▶ . ∢ 手 ▶ . ∢ 手

Beta-Bernoulli/Binomial Model (BBM)

- Beta prior on $p = P(\text{win})$
- \blacktriangleright here in parameterization used, e.g., by Walley (1991):

$$
y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \qquad n^{(n)} = n^{(0)} + n
$$

$$
y^{(n)} = E[p \mid s] = P \qquad \text{Var}(p \mid s) = \frac{y^{(n)}(1 - y^{(n)})}{n^{(n)} + 1}
$$

→ 伊 ▶ → ヨ ▶ → ヨ

つへへ

Beta-Bernoulli/Binomial Model (BBM)

no conflict:

$$
\text{prior } n^{(0)} = 8, \ y^{(0)} = 0.75
$$
\n
$$
\text{data } s/n = 12/16 = 0.75
$$

 \sim 一心理 \sim

A.

 \leftarrow \Box \rightarrow

Beta-Bernoulli/Binomial Model (BBM)

Beta-Bernoulli/Binomial Model (BBM)

Beta-Bernoulli/Binomial Model (BBM)

Prior-Data Conflict $\hat{=}$ situation in which.

- \blacktriangleright ... informative prior beliefs and trusted data (sampling model correct, no outliers, etc.) are in conflict.
- \blacktriangleright "... the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising." (Evans & Moshonov, 2006)
- \blacktriangleright ... there are not enough data to overrule the prior.

We should notice prior-data conflict in the posterior.

Prior-Data Conflict $\hat{=}$ situation in which...

- \blacktriangleright ... informative prior beliefs and trusted data (sampling model correct, no outliers, etc.) are in conflict.
- \blacktriangleright "... the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising." (Evans & Moshonov, 2006)
- \blacktriangleright ... there are not enough data to overrule the prior.

We should notice prior-data conflict in the posterior.

$$
E[p \mid s] = y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}
$$

 \rightarrow Conflict between prior and data is just averaged out!

Prior-Data Conflict $\hat{=}$ situation in which...

- \blacktriangleright ... informative prior beliefs and trusted data (sampling model correct, no outliers, etc.) are in conflict.
- \blacktriangleright "... the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising." (Evans & Moshonov, 2006)
- \blacktriangleright ... there are not enough data to overrule the prior.

We should notice prior-data conflict in the posterior.

$$
E[p \mid s] = y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}
$$

 \rightarrow Conflict between prior and data is just averaged out!

$$
\text{Var}(p \mid s) = \frac{y^{(n)}(1 - y^{(n)})}{n^{(n)} + 1}, \qquad n^{(n)} = n^{(0)} + n
$$

 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow does not change systematically with pri[or-](#page-16-0)[dat](#page-18-0)a [c](#page-17-0)o[n](#page-14-0)[fl](#page-15-0)[i](#page-18-0)[ct](#page-19-0)[!](#page-0-0)

つくい

Prior-Data Conflict & Conjugate Priors

Weighted average structure is underneath all common conjugate priors for exponential family sampling distributions!

 $X\overset{iid}{\sim}$ linear, canonical exponential family, i.e.

$$
p(x | \theta) \propto \exp\left\{ \langle \psi, \tau(x) \rangle - nb(\psi) \right\} \qquad \left[\psi \text{ transformation of } \theta \right]
$$

 \blacktriangleright conjugate prior: $p(\psi) \quad \propto \exp\left\{ n^{(0)} \left[\langle \psi, y^{(0)} \rangle - \mathbf{b}(\psi) \right] \right\}$ ► (conjugate) posterior: $p(\psi | x) \propto \exp\left\{ n^{(n)} [\langle \psi, y^{(n)} \rangle - \mathbf{b}(\psi)] \right\},$

where
$$
y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{\tau(x)}{n}
$$
 and $n^{(n)} = n^{(0)} + n$.
\n
\n Gero Walter Bayesian Inference with Sets of Conjugate Prors 7/15

Why Generalize Bayesian Inference?

Assigning a certain prior distribution on p

 \leftrightarrow Defining a conglomerate of probability statements (on p).

Bayesian theory lacks the ability to specify the degree of uncertainty in these probability statements.

す イヨ メ ヨ メ

Why Generalize Bayesian Inference?

Assigning a certain prior distribution on p

 \leftrightarrow Defining a conglomerate of probability statements (on p).

Bayesian theory lacks the ability to specify the degree of uncertainty in these probability statements.

Variance or stretch of a distribution for describing uncertainty?

 $A\cup A$

Why Generalize Bayesian Inference?

Assigning a certain prior distribution on p

 \leftrightarrow Defining a conglomerate of probability statements (on p).

Bayesian theory lacks the ability to specify the degree of uncertainty in these probability statements.

Variance or stretch of a distribution for describing uncertainty?

 \rightarrow Does not work in the case of prior-data conflict: In conjugate updating, the posterior variance does not depend on the degree of prior-data conflict in most cases.

 \mathcal{A} and \mathcal{A} in the set of \mathcal{A}

Why Generalize Bayesian Inference?

Assigning a certain prior distribution on p

 \leftrightarrow Defining a conglomerate of probability statements (on p).

Bayesian theory lacks the ability to specify the degree of uncertainty in these probability statements.

Variance or stretch of a distribution for describing uncertainty?

 \rightarrow Does not work in the case of prior-data conflict: In conjugate updating, the posterior variance does not depend on the degree of prior-data conflict in most cases.

 \rightarrow How to express the precision of a probability statement?

 $\mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A}$

 QQ

Generalized Bayesian Inference — Basic Idea

Use set of priors \rightarrow base inferences on set of posteriors obtained by element-wise updating \rightarrow numbers become intervals:

$$
\begin{array}{ccc}\nE[p] & \longrightarrow & [E[p], \overline{E}[p]] \\
P(p \in A) & \longrightarrow & [P(p \in A), \overline{P}(p \in A)]\n\end{array}
$$

 \sim

ARAB

Generalized Bayesian Inference — Basic Idea

Use set of priors \rightarrow base inferences on set of posteriors obtained by element-wise updating \rightarrow numbers become intervals:

$$
\begin{array}{ccc}\nE[p] & \longrightarrow & [E[p], \overline{E}[p]] \\
P(p \in A) & \longrightarrow & [P(p \in A), \overline{P}(p \in A)]\n\end{array}
$$

Shorter intervals \leftrightarrow more precise probability statements

A & Y B & Y B

Generalized Bayesian Inference — Basic Idea

Use set of priors \rightarrow base inferences on set of posteriors obtained by element-wise updating \rightarrow numbers become intervals:

$$
\begin{array}{ccc}\nE[p] & \longrightarrow & [E[p], \overline{E}[p]] \\
P(p \in A) & \longrightarrow & [P(p \in A), \overline{P}(p \in A)]\n\end{array}
$$

Shorter intervals \leftrightarrow more precise probability statements

- \rightarrow differentiate between
	- \triangleright stochastic uncertainty ("risk") vs.
	- non-stochastic uncertainty ("ambiguity")

 \mathcal{A} and \mathcal{A} in the set of \mathcal{B}

pdc-Imprecise BBM (pdc-IBBM): Walley 1991, Ch.5.4.3

no conflict:

prior $n^{(0)} \in [4, 8]$, $y^{(0)} \in [0.7, 0.8]$ data $s/n = 12/16 = 0.75$

 \equiv

 \sim

 \leftarrow

pdc-Imprecise BBM (pdc-IBBM): Walley 1991, Ch.5.4.3

pdc-Imprecise BBM (pdc-IBBM): Walley 1991, Ch.5.4.3

pdc-Imprecise BBM (pdc-IBBM): Walley 1991, Ch.5.4.3

 299

Inner Workings

 \triangleright convex sets of distributions ("credal sets")

イロン イ母ン イヨン イヨン

Inner Workings

- convex sets of distributions ("credal sets")
- \triangleright convexity needed for consistency properties ("coherence")

- ④ 伊 ≯ ④ 重 ≯ ④ 重

 Ω

Inner Workings

- convex sets of distributions ("credal sets")
- convexity needed for consistency properties ("coherence")
- \triangleright sets of distributions induced by sets of parameters: not necessarily convex

MANABARE

Inner Workings

- convex sets of distributions ("credal sets")
- convexity needed for consistency properties ("coherence")
- \triangleright sets of distributions induced by sets of parameters: not necessarily convex
- \blacktriangleright take convex hull of these parametric distributions: credal set $=$ finite convex mixtures of parametric distributions

→ 伊 ▶ → 手 ▶ →

Inner Workings

- convex sets of distributions ("credal sets")
- convexity needed for consistency properties ("coherence")
- \triangleright sets of distributions induced by sets of parameters: not necessarily convex
- \blacktriangleright take convex hull of these parametric distributions: credal set $=$ finite convex mixtures of parametric distributions
- \triangleright prior/posterior credal set: convex hull of distributions induced by prior/posterior parameter set

MANABARE

Inner Workings

- convex sets of distributions ("credal sets")
- \triangleright convexity needed for consistency properties ("coherence")
- \triangleright sets of distributions induced by sets of parameters: not necessarily convex
- \blacktriangleright take convex hull of these parametric distributions: credal set $=$ finite convex mixtures of parametric distributions
- \triangleright prior/posterior credal set: convex hull of distributions induced by prior/posterior parameter set
- \triangleright pictures show parameter sets (that need not be convex)

 2990

Properties

Works for any canonical exponential family sampling distribution! \rightarrow generalized iLUCK models, Walter & Augustin (2009)

メロメ メ母メ メミメ メミメ

Gero Walter [Bayesian Inference with Sets of Conjugate Priors](#page-0-0) 13/15

 Ω

Properties

Works for any canonical exponential family sampling distribution! → generalized iLUCK-models, Walter & Augustin (2009)

- \blacktriangleright $n^{(0)}$ governs precision of posterior:
	- $n^{(0)} \uparrow \leftrightarrow \text{precision} \downarrow$

メロメ メ母メ メミメ メミメ

 299

Properties

Works for any canonical exponential family sampling distribution! → generalized iLUCK-models, Walter & Augustin (2009)

- \blacktriangleright $n^{(0)}$ governs precision of posterior:
	- $n^{(0)} \uparrow \leftrightarrow \text{precision} \downarrow$

► $n \to \infty$: consistency $(y^{(n)}$ set reduces to a point at $\tau(x)/n$)

MANABARE

 299

Properties

Works for any canonical exponential family sampling distribution! → generalized iLUCK-models, Walter & Augustin (2009)

- \blacktriangleright $n^{(0)}$ governs precision of posterior: $n^{(0)} \uparrow \leftrightarrow \text{precision} \downarrow$
- ► $n \to \infty$: consistency $(y^{(n)}$ set reduces to a point at $\tau(x)/n$)
- ► $y^{(0)}$ stretch \uparrow \leftrightarrow $y^{(n)}$ stretch \uparrow

イロト イタト イモト イモト

つくい

Properties

Works for any canonical exponential family sampling distribution! → generalized iLUCK-models, Walter & Augustin (2009)

- \blacktriangleright $n^{(0)}$ governs precision of posterior:
	- $n^{(0)} \uparrow \leftrightarrow \text{precision} \downarrow$
- ► $n \to \infty$: consistency $(y^{(n)}$ set reduces to a point at $\tau(x)/n$)
- ► $y^{(0)}$ stretch \uparrow \leftrightarrow $y^{(n)}$ stretch \uparrow
- \triangleright inferences should be linear in posterior distributions: then min/max are attained at the parametric distributions (these are the extreme points of the credal set); E, Var are linear in the parametric distributions.

イロト イタト イモト イモト

つくい

Properties

Works for any canonical exponential family sampling distribution! → generalized iLUCK-models, Walter & Augustin (2009)

 \blacktriangleright $n^{(0)}$ governs precision of posterior:

 $n^{(0)} \uparrow \leftrightarrow \text{precision} \downarrow$

- ► $n \to \infty$: consistency $(y^{(n)}$ set reduces to a point at $\tau(x)/n$)
- ► $y^{(0)}$ stretch \uparrow \leftrightarrow $y^{(n)}$ stretch \uparrow
- \triangleright inferences should be linear in posterior distributions: then min/max are attained at the parametric distributions (these are the extreme points of the credal set); E, Var are linear in the parametric distributions.
- \triangleright reaction to prior-data conflict due to different 'updating speeds' depending on $n^{(0)}$: $y^{(n)}$ moves "faster" for low $n^{(0)}$

イロメ マタメ マモメマモメ

 QQ

Open Ends/Challenges

 \triangleright rectangular prior set (two-dimensional interval) seems natural, but generally any shape possible

 ϵ = \sim

 \sim

 \leftarrow

Open Ends/Challenges

- \triangleright rectangular prior set (two-dimensional interval) seems natural, but generally any shape possible
- \triangleright posterior parameter sets are not rectangular anyway

 \rightarrow \pm \rightarrow

Open Ends/Challenges

- \triangleright rectangular prior set (two-dimensional interval) seems natural, but generally any shape possible
- \triangleright posterior parameter sets are not rectangular anyway
- \triangleright prior shape influences the posterior inferences

Open Ends/Challenges

- \triangleright rectangular prior set (two-dimensional interval) seems natural, but generally any shape possible
- \triangleright posterior parameter sets are not rectangular anyway
- prior shape influences the posterior inferences
- shape can be taylored to enable desired inference properties (e.g. bonus precision if prior and data agree especially well)

Open Ends/Challenges

- \triangleright rectangular prior set (two-dimensional interval) seems natural, but generally any shape possible
- \triangleright posterior parameter sets are not rectangular anyway
- prior shape influences the posterior inferences
- shape can be taylored to enable desired inference properties (e.g. bonus precision if prior and data agree especially well)
- \triangleright for more complex shapes, elicitation becomes more difficult

Open Ends/Challenges

- \triangleright rectangular prior set (two-dimensional interval) seems natural, but generally any shape possible
- \triangleright posterior parameter sets are not rectangular anyway
- \triangleright prior shape influences the posterior inferences
- \triangleright shape can be taylored to enable desired inference properties (e.g. bonus precision if prior and data agree especially well)
- \triangleright for more complex shapes, elicitation becomes more difficult
- ightharpoonup take two different $n^{(0)}$ values?

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\} \right.$ $\left\{ \left\vert \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$ $\left\{ \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$