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We want to learn about the system reliability
Rsys(t) = P(Tsys > t) based on
» system run until time thow:

2_ ¢ observations, each being either
a failure time ¢; or a censoring time t;f = thow

[y

» cautious assumptions on component reliability:
expert information,

¢ e.g. from the component manufacturer

which we don’t trust entirely

How to combine these two information sources?
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expert info + data — complete picture
prior distribution + likelihood — posterior distribution
p(A) X pe(t|A) o p(Alt) » Bayes’ Rule
l \ \
inverse Gamma Weibull with inverse Gamma
prior fixed shape k posterior » conjugacy
A~ IG(a@, pO) t| A~ Weig(A) At~ IG(a®,pO)

» makes learning about component reliability tractable,
just update parameters: a©® — a0, O — g

» conjugacy holds also for censored observations
» closed form for system reliability function Rgys(t | t)
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What if expert information and data tell different stories?

» reparametrization helps to understand effect of prior-data conflict:

n(o) - a(o) -1 , y(O) = ﬁ(o)/(a(o) — 1) , Where
6 = ;0 6’ (0)
n n +¢, n(O)/ n(0)+£ 5211]
y© = E[A]
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What if expert information and data tell different stories?

» reparametrization helps to understand effect of prior-data conflict:

n® = 0 y9=0/0®-1),  where
20 — (0) YO = n® © 4 1 Yt
70 — pseudocounts y© =E[A]| | y© =E[A|t] ML estimator A

E[A | t] is a weighted average of E[A] and Al
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y@ = E[A | t] = 53 (6.4 weeks), sd = 61
n® =4
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Prior-data conflict example

y@ = E[A | t] = 52 (6.4 weeks), sd = 61
n@ =4
» almost the same as before!
y© = E[A] = 62 (7 weeks), sd = 72
n® =2
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» Averaging property holds for all conjugate models (!)
Can we mitigate this and still keep tractability?

» Reliability function R(t) is a collection of probability statements:
R(t) = probability that the system survives past t.
How can we express uncertainty
about these probability statements?

» Add imprecision as new modelling dimension:
Sets of priors model uncertainty in probability statements
and allow to better model partial or vague information on A.

» Separate uncertainty whithin the model (reliability statements)
from uncertainty about the model (which parameters).

» Can also be seen as systematic sensitivity analysis
or robust Bayesian approach.
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Uncertainty about probability statements
smaller sets = more precise probability statements
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exactly known as 5 out of 100 not exactly known, supposedly
== P(win) = 5/100 between 1 and 7 out of 100

= P(win) = [1/100, 7/100]
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Uncertainty about probability statements
smaller sets = more precise probability statements

Lottery A Lottery B
Number of winning tickets: Number of winning tickets:
exactly known as 5 out of 100 not exactly known, supposedly
== P(win) = 5/100 between 1 and 7 out of 100

== P(win) = [1/100, 7/100]

Let parameters (n?, @) vary in a set TT?) == set of priors

Sets of priors — sets of posteriors by updating element by element:
GBR (Walley 1991) ensures coherence (a consistency property)

Walter and Augustin (2009), Walter (2013):

10 = [n(O)Iﬁ(O)] % [y(O),y(O)]

gives tractability & meaningful reaction to prior-data conflict:

» larger set of posteriors ‘

.~ more imprecise / cautious probability statements TU /e B
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Sets of prior distributions: examples

P\ | t] € [42,92] (5.7-8.5 week
Z[4,7], sd € [48,99]

= E[A] € [81,127] (8—10 weeks),
n® e [2,5], sd € [91,180]
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Sets of prior distributions: examples

no conflict
prior-data conflict
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System reliability

» Closed form for the system reliability:

Rsys(t | tﬁy n(O)/ ]/(0))

1O +m+1

l—m i(£ B m) n(o)y(O) + (6 - m)tlrgow + Z;ﬂ:l t];
P\ nOyO + (€ —m = i)ty + Ly £ + itk
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» Closed form for the system reliability:

Rsys(t | tﬁy n(O), ]/(O))
(0)
nOyO + (£ —mytk , + 2?1:1 t’]? e

t—m r—m
;( ) ( 1 ) [n(O)y(O) +(—m-— i)t’r‘]ow + Z;”zl t]]f + itk

» Lower / upper bound through optimization for each ¢:

R
—Ssys 7n© e[ﬂ(o),ﬁ(o)]

Reys(t [ 4, TT®) = max  Reys(t | L, n@, 5%

nOe[n® 7]



System reliability: examples
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¢ = 3 components, n? € [2,5],

y© = E[A] € [103,154] (9—11 weeks)
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System reliability: examples

¢ = 3 components, n? € [2,5],
y© = E[A] € [103,154] (9—11 weeks)

t=(10,11,11%)

t = (15*,15*,15%)

00 02 04 06 08 1.0
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» Very limited data: Bayesian model with set of conjugate priors
» Set of system reliability functions reflects uncertainties from
limited data (with censoring!) and vague expert information
» In particular, it reflects prior-data conflict
» Parallel system == general system layouts
(k-out-of-n, series/parallel combinations)
with multiple types of components
using the survival signature
(Coolen and Coolen-Maturi 2012)

» Nonparametric model
(drop Weibull assumption for component lifetimes)

» Allow dependence between components
(common-cause failure, ...)

» Use model for maintenance planning
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General systems via the survival signature

Surprisingly early failures
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General systems via the survival signature

Surprisingly early failures
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