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We want to learn about the system reliability
Rsys(t) = P(Tsys > t) based on

I component test data:
nk failure times for components of type k,
k = 1, . . . ,K

I cautious assumptions
on component reliability:

expert information,
e.g. from maintenance managers and staff

How to combine these two information sources?
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Bayesian Inference

expert info + data → complete picture

prior distribution + sample distribution → posterior distribution

f (p) × f (s | p) ∝ f (p | s)
I Bayes’ Rule

Beta prior Binomial Beta posterior
distribution I conjugacy

p ∼ Beta(α(0), β(0)) s | p ∼ Binomial(n, p) p | s ∼ Beta(α(n), β(n))

I conjugate prior makes learning about parameter tractable,
just update hyperparameters: α(0)

→ α(n), β(0)
→ β(n)

I closed form for some inferences: E[p | s] = α(n)

α(n)+β(n)0.00
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Nonparametric Component Reliability

Functioning probability pk
t of k for each time t ∈ T = {ṫ1, ṫ2, . . .}

I discrete component reliability function Rk(t) = pk
t , t ∈ T .
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use Bayesian inference to estimate pk
t ’s:

I failure times tk = (tk
1, . . . , t

k
nk

) from test data
number of type k components functioning at t:
Sk

t ∼ Binomial(pk
t ,nk)

I expert knowledge
Beta parameters for each k and t:

pk
t ∼ Beta(n(0)

k,t , y
(0)
k,t )

n(0)
k,t = α(0)

k,t + β(0)
k,t , y(0)

k,t =
α(0)

k,t

α(0)
k,t +β

(0)
k,t

= E[pk
t ]

I complete picture
updated Beta parameters for each k and t:

pk
t | s

k
t ∼ Beta(n(n)

k,t , y
(n)
k,t )
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) from test data
number of type k components functioning at t:
Sk

t ∼ Binomial(pk
t ,nk)

I expert knowledge
Beta parameters for each k and t:

pk
t ∼ Beta(n(0)

k,t , y
(0)
k,t )

n(0)
k,t = α(0)

k,t + β(0)
k,t , y(0)

k,t =
α(0)

k,t

α(0)
k,t +β

(0)
k,t

= E[pk
t ]

I complete picture
updated Beta parameters for each k and t:

pk
t | s

k
t ∼ Beta(n(n)

k,t , y
(n)
k,t )
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Nonparametric Component Reliability
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System Reliability

I Closed form for the system reliability via the survival signature:

P
(
Tsys > t | {n(0)

k,t , y
(0)
k,t , t

k
}
1:K

)
=

m1∑
l1=0

· · ·

mK∑
lK=0

Φ(l1, . . . , lK)
K∏

k=1

P(Ck
t = lk | n

(0)
k,t , y

(0)
k,t , t

k)

Survival signature Φ(l1, . . . , lK)
(Coolen and Coolen-Maturi 2012)
= P(system functions | {lk k ’s function}1:K)

l1 l2 l3 Φ

0 0 1 0
1 0 1 0
2 0 1 1/3
3 0 1 1
4 0 1 1

l1 l2 l3 Φ

0 1 1 0
1 1 1 0
2 1 1 2/3
3 1 1 1
4 1 1 1

11

11

11

11

2 3

Posterior predictive probability that
in a new system, lk of the mk k ’s
function at time t:(mk

lk

) ∫
[P(T < t | pk

t )]lk

[P(T ≥ t | pk
t )]mk−lk

f (pk
t | n

(0)
k,t , y

(0)
k,t , t

k) dpk
t

(integral can be solved analytically)
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System Reliability: Example

T1 T2

T3 System
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Vague Knowledge & Prior-Data Conflict

I Choosing all these Beta parameters is hard . . .
How to model partial and vague expert knowledge?

I What if expert information and data tell different stories?
How is uncertainty about Rsys(t) expressed?

I Add imprecision as new modelling dimension:
Sets of priors model uncertainty in probability statements,
allow to better model partial or vague information on pk

t and
highlight prior-data conflict.

I Separate uncertainty whithin the model (reliability statements)
from uncertainty about the model (which parameters).

I Walter and Augustin (2009), Walter (2013):
vary (n(0), y(0)) in a set Π(0) = [n(0),n(0)] × [y(0), y(0)]

I easy elicitation, tractability & prior-data conflict sensitivity
I min and max Rsys(t) over Π(0) analytical in most cases!
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System Reliability Bounds
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Summary:
I Nonparametric modeling of component reliability curves
I Bayesian model combining expert knowledge and test data
I Set of system reliability functions reflects uncertainties from

limited data, vague expert information, and prior-data conflict

Next steps:
I Allow right-censored observations (RUL estimation)
I Allow dependence between components

(common-cause failure, . . . )
I Use for system design (where to put extra redundancy?)
I Use for maintenance planning
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