Nonparametric System Reliability Combining Expert Knowledge and Data

Gero Walter¹, Louis Aslett², Frank Coolen³

¹Eindhoven University of Technology, Eindhoven, NL ²University of Oxford, Oxford, UK ³Durham University, Durham, UK

g.m.walter@tue.nl

2016-02-04

We want to learn about the system reliability $R_{sys}(t) = P(T_{sys} > t)$ based on

We want to learn about the system reliability $R_{sys}(t) = P(T_{sys} > t)$ based on

component test data:

 n_k failure times for components of type k, k = 1, ..., K

We want to learn about the system reliability $R_{sys}(t) = P(T_{sys} > t)$ based on

component test data:

 n_k failure times for components of type k, k = 1, ..., K

cautious assumptions on component reliability:

expert information,

e.g. from maintenance managers and staff

We want to learn about the system reliability $R_{sys}(t) = P(T_{sys} > t)$ based on

component test data:

 n_k failure times for components of type k, k = 1, ..., K

cautious assumptions on component reliability:

expert information,

e.g. from maintenance managers and staff

How to combine these two information sources?

expert info + data \rightarrow complete picture

expert info	+	data	\rightarrow	complete picture
prior distribution	+	sample distribution	\rightarrow	posterior distribution
<i>f</i> (<i>p</i>)	×	$f(s \mid p)$	œ	f(p s) ► Bayes' Rule

Bayesian Inference

Bayesian Inference

expert info	+	data	\rightarrow	complete picture
prior distribution	+	sample distribution	\rightarrow	posterior distribution
f(p)	×	$f(s \mid p)$	œ	f(p s) ► Bayes' Rule
Beta prior		Binomial distribution		Beta posterior
$p \sim \text{Beta}(\alpha^{(0)},\beta^{(0)})$		$s \mid p \sim \text{Binomial}(n, p)$		$p \mid s \sim \text{Beta}(\alpha^{(n)}, \beta^{(n)})$
⁴ - ³ - ¹ - ⁰ - ⁰ - ¹ - ¹ - ¹ - ¹ - ¹ - ¹ - ¹ - ¹		0.20 0.15 0.10 0.05 0.00 0.00 0.00 0.05 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.05 0.5 0.		4 - 2 - 1 - 0.00 0.25 0.50 0.75 1.00 P TU/e Technische Universiteit Lindevensy of Technology

expert info	+	data	\rightarrow	complete picture
prior distribution	+	sample distribution	\rightarrow	posterior distribution
f(p)	×	$f(s \mid p)$	œ	f(p s) ► Bayes' Rule
Beta prior		Binomial distribution		Beta posterior
$p \sim \text{Beta}(\alpha^{(0)}, \beta^{(0)})$		$s \mid p \sim \text{Binomial}(n, p)$		$p \mid s \sim \text{Beta}(\alpha^{(n)}, \beta^{(n)})$

- ► conjugate prior makes learning about parameter tractable, just update hyperparameters: $\alpha^{(0)} \rightarrow \alpha^{(n)}, \beta^{(0)} \rightarrow \beta^{(n)}$
- ► closed form for some inferences: $E[p | s] = \frac{\alpha^{(n)}}{\alpha^{(n)} + \beta^{(n)}}$

Functioning probability p_t^k of **k** for each time $t \in \mathcal{T} = \{\dot{t}_1, \dot{t}_2, ...\}$ b discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

Functioning probability p_t^k of **k** for each time $t \in \mathcal{T} = \{\dot{t}_1, \dot{t}_2, ...\}$ • discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

Functioning probability p_t^k of **k** for each time $t \in \mathcal{T} = \{\dot{t}_1, \dot{t}_2, ...\}$ • discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

Functioning probability p_t^k of **k** for each time $t \in \mathcal{T} = \{\dot{t}_1, \dot{t}_2, ...\}$ • discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

Functioning probability p_t^k of **k** for each time $t \in \mathcal{T} = \{\dot{t}_1, \dot{t}_2, ...\}$ • discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

Functioning probability p_t^k of **k** for each time $t \in \mathcal{T} = \{\dot{t}_1, \dot{t}_2, ...\}$ • discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

use Bayesian inference to estimate p_t^k 's:

Functioning probability p_t^k of **k** for each time $t \in \mathcal{T} = \{\dot{t}_1, \dot{t}_2, ...\}$ b discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

use Bayesian inference to estimate p_t^k 's:

► failure times t^k = (t^k₁,...,t^k_{nk}) from test data number of type k components functioning at t: S^k_t ~ Binomial(p^k_t, n_k)

Functioning probability p_t^k of **k** for each time $t \in \mathcal{T} = \{\dot{t}_1, \dot{t}_2, ...\}$ • discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

use Bayesian inference to estimate p_t^k 's:

- ▶ failure times t^k = (t^k₁,..., t^k_{nk}) from test data number of type k components functioning at t: S^k_t ~ Binomial(p^k_t, n_k)
- expert knowledge

Beta parameters for each k and t:

 $p_t^k \sim \text{Beta}(n_{k,t}^{(0)}, y_{k,t}^{(0)})$

Functioning probability p_t^k of **k** for each time $t \in \mathcal{T} = \{\dot{t}_1, \dot{t}_2, ...\}$ • discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

use Bayesian inference to estimate p_t^k 's:

- ▶ failure times t^k = (t^k₁,..., t^k_{nk}) from test data number of type k components functioning at t: S^k_t ~ Binomial(p^k_t, n_k)
- expert knowledge

Beta parameters for each k and t:

$$p_t^k \sim \text{Beta}(n_{k,t}^{(0)}, y_{k,t}^{(0)})$$

complete picture

updated Beta parameters for each k and t:

 $p_t^k \mid s_t^k \sim \text{Beta}(n_{k,t}^{(n)}, y_{k,t}^{(n)})$

Functioning probability p_t^k of **k** for each time $t \in \mathcal{T} = \{\dot{t}_1, \dot{t}_2, ...\}$ b discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

use Bayesian inference to estimate p_t^k 's:

► failure times t^k = (t^k₁,...,t^k_{nk}) from test data number of type k components functioning at t: S^k_t ~ Binomial(p^k_t, n_k)

expert knowledge

Beta parameters for each k and t:

 $p_t^k \sim \text{Beta}(n_{k,t}^{(0)}, y_{k,t}^{(0)}) \qquad n_{k,t}^{(0)} = \alpha_{k,t}^{(0)} + \beta_{k,t}^{(0)}, \quad y_{k,t}^{(0)} = \frac{\alpha_{k,t}^{(0)}}{\alpha_{k,t}^{(0)} + \beta_{k,t}^{(0)}} = \text{E}[p_t^k]$

complete picture

updated Beta parameters for each k and t:

 $p_t^k \mid s_t^k \sim \text{Beta}(n_{k,t}^{(n)}, y_{k,t}^{(n)})$

Closed form for the system reliability via the survival signature:

$$P\left(T_{\mathsf{sys}} > t \mid \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\}^{1:K}\right)$$

= $\sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^K P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k)$

$$P\left(T_{sys} > t \mid \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\}^{1:K}\right)$$

$$= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k)$$
Survival signature $\Phi(l_1, \dots, l_K)$
(Coolen and Coolen-Maturi 2012)
$$= P(\text{system functions} \mid \{l_k \textbf{k}] \text{s function}\}^{1:K})$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 0} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 1 \quad 1 \quad 0}$$

$$\frac{l_1 \quad 0 \quad 1 \quad 0}{1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0}$$

$$\frac{l_1 \quad 1/3 \quad 2 \quad 1 \quad 1 \quad 2/3}{3 \quad 0 \quad 1 \quad 1 \quad 3 \quad 1 \quad 1 \quad 1}$$

$$P\left(T_{sys} > t \mid \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\}^{1:K}\right)$$

$$= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k)$$
Survival signature $\Phi(l_1, \dots, l_K)$
(Coolen and Coolen-Maturi 2012)
$$= P(system functions \mid \{l_k \ k \ is \ function\}^{1:K})$$

$$\frac{l_1 \ l_2 \ l_3 \ \Phi}{0 \ 0 \ 1 \ 0} \frac{l_1 \ l_2 \ l_3 \ \Phi}{0 \ 1 \ 1 \ 1 \ 0}$$

$$\frac{l_1 \ l_2 \ l_3 \ \Phi}{1 \ 0 \ 1 \ 1 \ 3 \ 1 \ 1 \ 1}$$

$$P\left(T_{sys} > t \mid \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\}^{1:K}\right)$$

$$= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k)$$
Survival signature $\Phi(l_1, \dots, l_K)$
(Coolen and Coolen-Maturi 2012)
$$= P(system functions \mid \{l_k \textbf{k}'s \text{ function}\}^{1:K})$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 0} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 1 \quad 1 \quad 0}$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 1 \quad 3 \quad 2 \quad 1 \quad 1 \quad 2/3}$$

$$3 \quad 0 \quad 1 \quad 1 \quad 3 \quad 1 \quad 1 \quad 1$$

$$4 \quad 0 \quad 1 \quad 1 \quad 4 \quad 1 \quad 1 \quad 1$$

$$P\left(T_{sys} > t \mid \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\}^{1:K}\right)$$

$$= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k)$$
Survival signature $\Phi(l_1, \dots, l_K)$
(Coolen and Coolen-Maturi 2012)
$$= P(system functions \mid \{l_k \textbf{k}'s \text{ function}\}^{1:K})$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 0} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 1 \quad 1 \quad 0}$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 1 \quad 3 \quad 3 \quad 1 \quad 1 \quad 1}$$

$$4 \quad 0 \quad 1 \quad 1 \quad 4 \quad 1 \quad 1 \quad 1$$

$$P\left(T_{sys} > t \mid \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\}^{1:K}\right)$$

$$= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k)$$
Survival signature $\Phi(l_1, \dots, l_K)$
(Coolen and Coolen-Maturi 2012)
$$= P(system functions \mid \{l_k \textbf{k}'s \text{ function}\}^{1:K})$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 0} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 1 \quad 1 \quad 0}$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 1 \quad 3 \quad 3 \quad 1 \quad 1 \quad 1}$$

$$4 \quad 0 \quad 1 \quad 1 \quad 4 \quad 1 \quad 1 \quad 1$$

$$P\left(T_{sys} > t \mid \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\}^{1:K}\right)$$

$$= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k)$$
Survival signature $\Phi(l_1, \dots, l_K)$
(Coolen and Coolen-Maturi 2012)
$$= P(system functions \mid \{l_k \textbf{k}'s \text{ function}\}^{1:K})$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 0} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 1 \quad 1 \quad 0}$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 1 \quad 3 \quad 3 \quad 1 \quad 1 \quad 1}$$

$$4 \quad 0 \quad 1 \quad 1 \quad 4 \quad 1 \quad 1 \quad 1$$

$$P\left(T_{sys} > t \mid \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\}^{1:K}\right)$$

$$= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k)$$
Survival signature $\Phi(l_1, \dots, l_K)$
(Coolen and Coolen-Maturi 2012)
$$= P(system functions \mid \{l_k \textbf{k}'s \text{ function}\}^{1:K})$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 0} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 1 \quad 1 \quad 0}$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 1 \quad 3 \quad 3 \quad 1 \quad 1 \quad 1}$$

$$4 \quad 0 \quad 1 \quad 1 \quad 4 \quad 1 \quad 1 \quad 1$$

$$P\left(T_{sys} > t \mid \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\}^{1:K}\right)$$

$$= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k)$$
Survival signature $\Phi(l_1, \dots, l_K)$
(Coolen and Coolen-Maturi 2012)
$$= P(system functions \mid \{l_k \textbf{k}'s \text{ function}\}^{1:K})$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 0} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 1 \quad 1 \quad 0}$$

$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 1 \quad 3 \quad 3 \quad 1 \quad 1 \quad 1}$$

$$4 \quad 0 \quad 1 \quad 1 \quad 4 \quad 1 \quad 1 \quad 1$$

$$\begin{split} P\left(T_{\text{sys}} > t \mid \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\}^{1:K}\right) \\ &= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^K P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k) \\ \text{Survival signature } \Phi(l_1, \dots, l_K) \\ \text{(Coolen and Coolen-Maturi 2012)} \\ &= P(\text{system functions} \mid \{l_k \mid \mathbf{k} \text{'s function}\}^{1:K}) \\ \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 0} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 1 \quad 1 \quad 0} \\ \frac{l_1 \quad 0 \quad 1 \quad 0}{1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0} \\ \frac{l_2 \quad 0 \quad 1 \quad 1/3 \quad 2 \quad 1 \quad 1 \quad 2/3}{3 \quad 0 \quad 1 \quad 1 \quad 3 \quad 1 \quad 1 \quad 1} \\ 4 \quad 0 \quad 1 \quad 1 \quad 1 \quad 4 \quad 1 \quad 1 \quad 1 \end{split} \end{split}$$

System Reliability: Example

Vague Knowledge & Prior-Data Conflict

Choosing all these Beta parameters is hard ... How to model partial and vague expert knowledge?

Vague Knowledge & Prior-Data Conflict

- Choosing all these Beta parameters is hard ... How to model partial and vague expert knowledge?
- What if expert information and data tell different stories? How is uncertainty about R_{sys}(t) expressed?

- Choosing all these Beta parameters is hard ... How to model partial and vague expert knowledge?
- What if expert information and data tell different stories? How is uncertainty about R_{sys}(t) expressed?
- Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements, allow to better model partial or vague information on p^k_t and highlight prior-data conflict.

- Choosing all these Beta parameters is hard ... How to model partial and vague expert knowledge?
- What if expert information and data tell different stories? How is uncertainty about R_{sys}(t) expressed?
- Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements, allow to better model partial or vague information on p^k_t and highlight prior-data conflict.
- Separate uncertainty whithin the model (reliability statements) from uncertainty about the model (which parameters).

- Choosing all these Beta parameters is hard ... How to model partial and vague expert knowledge?
- What if expert information and data tell different stories? How is uncertainty about R_{sys}(t) expressed?
- Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements, allow to better model partial or vague information on p^k_t and highlight prior-data conflict.
 - Separate uncertainty whithin the model (reliability statements) from uncertainty about the model (which parameters).
- ► Walter and Augustin (2009), Walter (2013): vary $(n^{(0)}, y^{(0)})$ in a set $\Pi^{(0)} = [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [y^{(0)}, \overline{y}^{(0)}]$

- Choosing all these Beta parameters is hard ... How to model partial and vague expert knowledge?
- What if expert information and data tell different stories? How is uncertainty about R_{sys}(t) expressed?
- Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements, allow to better model partial or vague information on p^k_t and highlight prior-data conflict.
- Separate uncertainty whithin the model (reliability statements) from uncertainty about the model (which parameters).
- ► Walter and Augustin (2009), Walter (2013): vary $(n^{(0)}, y^{(0)})$ in a set $\Pi^{(0)} = [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [y^{(0)}, \overline{y}^{(0)}]$

easy elicitation, tractability & prior-data conflict sensitivity

- Choosing all these Beta parameters is hard ... How to model partial and vague expert knowledge?
- What if expert information and data tell different stories? How is uncertainty about R_{sys}(t) expressed?
- Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements, allow to better model partial or vague information on p^k_t and highlight prior-data conflict.
- Separate uncertainty whithin the model (reliability statements) from uncertainty about the model (which parameters).
- ► Walter and Augustin (2009), Walter (2013): vary $(n^{(0)}, y^{(0)})$ in a set $\Pi^{(0)} = [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [y^{(0)}, \overline{y}^{(0)}]$
 - easy elicitation, tractability & prior-data conflict sensitivity
 - min and max $R_{sys}(t)$ over $\Pi^{(0)}$ analytical in most cases!

System Reliability Bounds

TU/e Technische Universiteit Eindhoven University of Technology

Summary:

- Nonparametric modeling of component reliability curves
- Bayesian model combining expert knowledge and test data
- Set of system reliability functions reflects uncertainties from limited data, vague expert information, and prior-data conflict

Summary:

- Nonparametric modeling of component reliability curves
- Bayesian model combining expert knowledge and test data
- Set of system reliability functions reflects uncertainties from limited data, vague expert information, and prior-data conflict

Next steps:

- Allow right-censored observations (RUL estimation)
- Allow dependence between components (common-cause failure, ...)
- Use for system design (where to put extra redundancy?)
- Use for maintenance planning

References

Aslett, Louis, Frank Coolen, and Simon Wilson (2015). "Bayesian Inference for Reliability of Systems and Networks Using the Survival Signature". In: *Risk Analysis* 35 (9), pp. 1640–1651. ISSN: 1539-6924. DOI: 10.1111/risa.12228.

- Coolen, Frank and Tahani Coolen-Maturi (2012). "Generalizing the Signature to Systems with Multiple Types of Components". In: *Complex Systems and Dependability*. Ed. by W. Zamojski et al. Vol. 170.
 Advances in Intelligent and Soft Computing. Springer, pp. 115–130. DOI: 10.1007/978-3-642-30662-4_8.
- Walter, G. (2013). "Generalized Bayesian Inference under Prior-Data Conflict". PhD thesis. Department of Statistics, LMU Munich. URL: http://edoc.ub.uni-muenchen.de/17059/.
- Walter, G. and T. Augustin (2009). "Imprecision and Prior-data Conflict in Generalized Bayesian Inference". In: *Journal of Statistical Theory and Practice* 3, pp. 255–271. DOI: 10.1080/15598608.2009.10411924.
 Walter, Gero, Louis Aslett, and Frank Coolen (2016). "Bayesian Nonparametric System Reliability using Sets of Priors". Submitted to *International Journal of Approximate Reasoning.*