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Bayesian Inference

expert info — complete picture




Bayesian Inference

expert info + data — complete picture

prior distribution + sample distribution — posterior distribution

f(6) X f(x16) o p(6]x)
» Bayes’ Rule
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Bayesian Inference

expert info + data — complete picture

prior distribution + sample distribution — posterior distribution

f(0) X f(z0) o p0]|x)
» Bayes’ Rule
Binomial
distribution

s | p ~ Binomial(n, p)
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expert info + data — complete picture

prior distribution + sample distribution — posterior distribution

f(0) X f(x16) o« p(0]|x)
» Bayes’ Rule
Beta prior Binomial
distribution

p ~ Beta(a©®, g@) s | p ~ Binomial(n, p)
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Bayesian Inference

expert info +

prior distribution  +
f(9) X

Beta prior
p ~ Beta(a©®, g@)
4
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data

sample distribution
f(x10)

Binomial
distribution
s | p ~ Binomial(n, p)
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complete picture

posterior distribution

p(0 | x)

» Bayes’ Rule
Beta posterior

» conjugacy

p |'s ~ Beta(a, B)
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expert info + data — complete picture

prior distribution + sample distribution — posterior distribution

f(0) X f(x06) o« p(0]|x)
» Bayes’ Rule
Beta prior Binomial Beta posterior
distribution » conjugacy
p~ Beta(a©), /3(0)) s | p ~ Binomial(n, p) pls~ Beta(a™, ﬁ(”))

» conjugate prior makes learning about parameter tractable,
just update hyperparameters: a® — o™, g0 — g

o)

» closed form for some inferences: E[p | s] = pOR



Prior-Data Conflict

What if expert information and data tell different stories?
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What if expert information and data tell different stories?

Prior-Data Conflict

» informative prior beliefs and trusted data
(sampling model correct, no outliers, etc.) are in conflict
“[. . .] the prior [places] its mass primarily on distributions in the
sampling model for which the observed data is surprising”
(Evans and Moshonov 2006)

» there are not enough data to overrule the prior



Prior-Data Conflict: Example

» Bernoulli observations: 0/1 observations (failure/success)
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» given: a set of n i.i.d. observations and strong prior information
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» Bernoulli observations: 0/1 observations (failure/success)
» given: a set of n i.i.d. observations and strong prior information
» We are, e.g., interested in probability for success in next trial
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» Bernoulli observations: 0/1 observations (failure/success)
» given: a set of n i.i.d. observations and strong prior information
» We are, e.g., interested in probability for success in next trial

Beta-Binomial Model
data: |s|p
conjugate prior: | p|a®,® ~ Beta(a®, p0)

i

Binomial(n, p)

posterior: ‘ pla®, M ~ Beta(a™, M)

where s = number of successes in the n observed trials



Reparametrisation of the Beta Distribution

» reparametrisation helps to understand effect of prior-data conflict:

70 = a4 gO 0 = _ a9
' a0 + 60’
0)

which are updated as

(n) — n'

)
MONEA

n™ =n© 47, y
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» reparametrisation helps to understand effect of prior-data conflict:

70 = a4 gO 0 = _ a9
' a0 + 60’
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which are updated as
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Reparametrisation of the Beta Distribution

» reparametrisation helps to understand effect of prior-data conflict:

70 = a4 gO 0 = a9
’ a0 + 60’

0)

which are updated as

o O

\ n0 +n ! n0 +n

y =E[p] |y" =Elp|s]

n™ =n© 47, y
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Reparametrisation of the Beta Distribution

» reparametrisation helps to understand effect of prior-data conflict:

)
0 = 4O 4 5O O _*" i
n aV+ Y,y 20 1 50 which are updated as
©
7 = O 4 g ym=_1__ o, 2 3

0

\ n0 4+ n ! n0 +n E\

vy =E[p] 'y =E[p|s] ML estimator p
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Reparametrisation of the Beta Distribution

» reparametrisation helps to understand effect of prior-data conflict:

0
n®=a® 4 g0 O = a®

- m, which are updated as

7 = O 4 Yy = n® YO + - s

" Y +nn\

= pseudocounts | ¥ =E[p] y" =E[p|s] ML estimatorp
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» reparametrisation helps to understand effect of prior-data conflict:

)
0 = 40 4 gO) O-_> i

n aV+pv, oy RO 5(0) ,  which are updated as

7 = O 4 g Y = n® YO + - s

" Y, +n! +M\

= pseudocounts | ¥ = E[p] |y =E[p|s] | ML estimator p

E[p | s] = y™ is a weighted average of E[p] and p!
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» reparametrisation helps to understand effect of prior-data conflict:

)
0 = 40 4 gO) O-_> i

n aV+pv, oy RO 5(0) ,  which are updated as

7 = O 4 g Y = n® YO + - s

" Y, +n! +M\

= pseudocounts | ¥ = E[p] |y =E[p|s] | ML estimator p

E[p | s] = y™ is a weighted average of E[p] and p!

Y- y™)

decreases with n!
n 41

Var[p | s] =




Beta-Binomial Model (BBM)

o no conflict:
© prior n© =8, 4y© = 0.75
= o] . datas/n =12/16 = 0.75
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Beta-Binomial Model (BBM)

no conflict:

o
" prior n© =8, 4y© = 0.75
[e0]
- o] 12 outof 16 data s/n = 12/16 = 0.75
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Beta-Binomial Model (BBM)

no conflict:

o
prior n© =8, 4y© = 0.75

[e0]

- 12 out of 16 data s/n = 12/16 = 0.75

Y © | v

& ° n =24, y® = 0.75

IS

of Z . prior-data conflict:
S prior n¥ = 8, 4y© = 0.25
= data s/n = 16/16 = 1

I
5 10 15 20 25
n resp. n™
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Beta-Binomial Model (BBM)

no conflict:

o
prior n© =8, 4y© = 0.75

[ee]

_ 3 12 outol 16 data s/n = 12/16 = 0.75

= o ,\\6 v

g ° > ™ = 24, y® = 0.75

o < | A\© A

of z . prior-data conflict:
S prior n¥ = 8, 40 = 0.25
g_ datas/n =16/16 =1

I
5 10 15 20 25
n resp. n™
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Canonical Conjugate Priors
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Averaging property holds for all conjugate models (!)

(x1,...,x,) = “ canonical exponential family
f(x | O) oc exp {(gb, T(x)) — nb(gb)} [lp transformation of 9]

(includes Binomial, Multinomial, Normal, Poisson, Exponential, .. .)
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Averaging property holds for all conjugate models (!)

(x1,...,x,) = “ canonical exponential family
f(x | O) oc exp {(gb, (x)) — nb(gb)} [lp transformation of 9]

(includes Binomial, Multinomial, Normal, Poisson, Exponential, .. .)

» conjugate prior: FW1n9, 4y «exp {n(o)[(w, y0y - b(yb)]}
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Averaging property holds for all conjugate models (!)

(x1,...,x,) = “ canonical exponential family
f(x | O) oc exp {(gb, (x)) — nb(gb)} [lp transformation of 9]

(includes Binomial, Multinomial, Normal, Poisson, Exponential, .. .)

» conjugate prior: FW 1,y «exp {n(o)[(gb, y0y - b(gl))]}
» (conjugate) posterior:  f(i | 19, 9, &) o exp {n"”[(t/), yy — b(l/))]}
)
Y ) S N C.)) ) — 40
where vy o +n(0)+n . and n n +n




Canonical Conjugate Priors
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Averaging property holds for all conjugate models (!)

(x1,...,x,) = “ canonical exponential family
f(x | O) oc exp {(gb, (x)) — nb(gb)} [lp transformation of 9]

(includes Binomial, Multinomial, Normal, Poisson, Exponential, .. .)

» conjugate prior: FW 120,y o exp {n @, y Oy = b))
» (conjugate) posterior:  f(i | 19, 9, &) o exp {n"”[(t/), yy — b(l/))]}

) (x)
n n T\
.0 R Sl (n) — ,(0)

O y +n(0)+n o and n n" +n

where 4" =

» n0) determines spread and learning speed
» v = prior expectation of t(x)/n




Imprecise / Interval Probability

» Averaging property holds for all conjugate models (!)
Can we mitigate this and still keep tractability?

sch
I U Emdnoven
sity of Technology



Imprecise / Interval Probability

» Averaging property holds for all conjugate models (!)
Can we mitigate this and still keep tractability?

» Prior f(p) is a collection of probability statements:
b
I fpydp=Pa<p<b)

How can we express uncertainty
about these probability statements?

sche Universiteit
Emdnoven
sity of Technology



Imprecise / Interval Probability

8/20

» Averaging property holds for all conjugate models (!)
Can we mitigate this and still keep tractability?

» Prior f(p) is a collection of probability statements:
b
[ fp)dp =Pa<p<b)
How can we express uncertainty

about these probability statements?

» Add imprecision as new modelling dimension:
Sets of priors model uncertainty in probability statements
and allow to better model partial or vague information on p.
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» Averaging property holds for all conjugate models (!)
Can we mitigate this and still keep tractability?

» Prior f(p) is a collection of probability statements:
b
[ fp)dp =Pa<p<b)
How can we express uncertainty

about these probability statements?

» Add imprecision as new modelling dimension:
Sets of priors model uncertainty in probability statements
and allow to better model partial or vague information on p.

» Separate uncertainty within the model (probability statements)
from uncertainty about the model (how certain about statements)
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» Averaging property holds for all conjugate models (!)
Can we mitigate this and still keep tractability?

» Prior f(p) is a collection of probability statements:
b
) fo)dp =P@a<p<b)
How can we express uncertainty

about these probability statements?

» Add imprecision as new modelling dimension:
Sets of priors model uncertainty in probability statements
and allow to better model partial or vague information on p.

» Separate uncertainty within the model (probability statements)
from uncertainty about the model (how certain about statements)

» Can also be seen as systematic sensitivity analysis
or robust Bayesian approach.



Sets of Prior Distributions
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Uncertainty about probability statements
smaller sets = more precise probability statements

Lottery A Lottery B
Number of winning tickets: Number of winning tickets:
exactly known as 5 out of 100 not exactly known, supposedly
» P(win) = 5/100 between 1 and 7 out of 100

» P(win) = [1/100, 7/100]
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Lottery A Lottery B
Number of winning tickets: Number of winning tickets:
exactly known as 5 out of 100 not exactly known, supposedly
» P(win) = 5/100 between 1 and 7 out of 100

» P(win) = [1/100, 7/100]

Let hyperparameters (1), 1) vary in a set TT”) » set of priors M©
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Uncertainty about probability statements
smaller sets = more precise probability statements

Lottery A Lottery B
Number of winning tickets: Number of winning tickets:
exactly known as 5 out of 100 not exactly known, supposedly
» P(win) = 5/100 between 1 and 7 out of 100

» P(win) = [1/100, 7/100]
Let hyperparameters (1), y) vary in a set TT » set of priors M©

Sets of priors — sets of posteriors by updating element by element:
the Generalized Bayes Rule (GBR Walley 1991) ensures coherence
(a consistency property)



Sets of Prior Distributions
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Uncertainty about probability statements
smaller sets = more precise probability statements

Lottery A Lottery B
Number of winning tickets: Number of winning tickets:
exactly known as 5 out of 100 not exactly known, supposedly
» P(win) = 5/100 between 1 and 7 out of 100

» P(win) = [1/100, 7/100]
Let hyperparameters (1), y) vary in a set TT » set of priors M©

Sets of priors — sets of posteriors by updating element by element:

the Generalized Bayes Rule (GBR Walley 1991) ensures coherence

(a consistency property)

Set of posteriors M via 1" {(n(” y™): 09, y©) e T1C }

Bounds for inferences (point estimate, ...) by min/max over I,
e h

TU/e



Imprecise BBM with #© fixed

IDM (Walley 1996); Quaeghebeur and de Cooman (2005)

no conflict:

<
T 0
o | prior n© = 8, ¥ €[0.7,0.8]
= © datas/n =12/16 = 0.75
.
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n resp. n™
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IDM (Walley 1996); Quaeghebeur and de Cooman (2005)

e no conflict:
prior 10 = 8, ¥ €[0.7,0.8]

[e0)
- S 2outof18 1 gatas/n =12/16 = 0.75
e :
g ° n™ =24,y €[0.73,0.77]
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IDM (Walley 1996); Quaeghebeur and de Cooman (2005)

y(o) resp_ y(”)
0.0 0.2 04 0.6 0.8

1.0

12 out of 16

I
10 15 20
n resp. n™

25

no conflict:

prior n¥ =8, 4y© €[0.7,0.8]
data s/n =12/16 = 0.75
v

n™ =24, y™ €[0.73,0.77]

prior data conflict:

prior n¥ =8, 4© €[0.2,0.3]
datas/n =16/16 =1
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IDM (Walley 1996); Quaeghebeur and de Cooman (2005)

y(o) resp_ y(”)
0.0 0.2 04 0.6 0.8

1.0

12 out of 16

I
10 15 20
n resp. n™

25

no conflict:

prior n¥ =8, 4y© €[0.7,0.8]
data s/n =12/16 = 0.75
v

n™ =24, y™ €[0.73,0.77]

A
prior data conflict:

prior n¥ =8, ¥ €[0.2,0.3]
datas/n=16/16 =1

Technische Universiteit
e Eindhoven
University of Technology



Imprecise BBM with #© interval

Walley (1991, §5.4.3); Walter and Augustin (2009); Walter (2013)

no conflict:

Q
; prior 1V € [4,8], ¥V € [0.7,0.8]
= o] datas/n =12/16 = 0.75
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Walley (1991, §5.4.3); Walter and Augustin (2009); Walter (2013)

o no conflict:

; prior 1V € [4,8], ¥V € [0.7,0.8]
o S 12outof® | datas/n=12/16=075
Y © | A 4
g < y™ €10.73,0.77]
ICH
= s
% .
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o

I
5 10 15 20 25
n resp. n™
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Walley (1991, §5.4.3); Walter and Augustin (2009); Walter (2013)

no conflict:

prior 1V € [4,8], ¥V € [0.7,0.8]
ey [2outoltS | datas/n=12/16=0.75
A 4

y™ €10.73,0.77]

1.0

¥ resp. y"
0.0 0.2 04 06 0.8

- prior-data conflict:

prior 19 €[4, 8], y¥ € [0.2,0.3]
datas/n =16/16 =1

I
5 10 15 20 25
n resp. n™
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Walley (1991, §5.4.3); Walter and Augustin (2009); Walter (2013)

no conflict:

prior 1V € [4,8], ¥V € [0.7,0.8]
datas/n =12/16 = 0.75
v
y™ €10.73,0.77]

1.0

12 out of 16

]

¥ resp. y"
0.0 0.2 04 06 0.8

- prior-data conflict:

prior 19 €[4, 8], y¥ € [0.2,0.3]
datas/n =16/16 =1
v

" € [0.73,0.86]

I
5 10 15 20 25
n resp. n™



Sets of Nonparametric Survival Functions
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Example: Scaled Normal Data

Example: Scaled Normal Data
Data: | = |pu ~ N(u1)
conjugate prior: | u|n?,y @  ~ N@y?,1/n?)

posterior: ‘ pln®,y™  ~ Ny™,1/n®) (1(x)/n = %)



Example: Scaled Normal Data

cdf
0.5

cdf
0.5

1.0

0.0

1.0

0.0

Set of priors: y@ 0 [3;4] and n© O [1;25]

13/20

Set of posteriors: y [0 [3.29:4] and n® 0 [11;35]

2 4 _ 6 8
Observation T(x) =X = 8 with n = 10

S
52 -
\V4 o | \V4
T — T T T T T ° T T T T T T
0 2 4 6 8 10 4 2 4 6 8 10
Observation T(x) =X = 4 with n = 10 of posterior HD(0.95) intervals = [2.95;4.59]
Set of priors: y@ 0 [3:4] and n©@ 0 [1;25] Set of posteriors: y® 0 [4.43;7.64] and n O [11;35]
S
EER
Vv o | A4
T =T T T T T ° T T T T T T
0 10

0 2 4 6 8 10
[ of posterior HD(0.95) intervals = [4.1;8.23]

Technische Universiteit
Eindhoven
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General Model Properties

Good inference properties (cf. other models based on sets of priors)
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General Model Properties

Good inference properties (cf. other models based on sets of priors)
» n— oo » 1y stretch in T1™ — 0 » precise inferences
~ larger n¥) » larger T1 » more vague inferences
» larger range of ¥ in TI¥ » larger range of ™ in T1"

» more vague inferences
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General Model Properties
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Good inference properties (cf. other models based on sets of priors)
» n— oo » 1y stretch in T1™ — 0 » precise inferences
~ larger n¥) » larger T1 » more vague inferences
> larger range of ¥ in T1®  » larger range of y in T1"
» more vague inferences
Model very easy to handle:
» Hyperparameter set 1) defines set of priors M©
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Good inference properties (cf. other models based on sets of priors)
» n— oo » 1y stretch in T1™ — 0 » precise inferences
~ larger n¥) » larger T1 » more vague inferences
> larger range of ¥ in T1®  » larger range of y in T1"
» more vague inferences
Model very easy to handle:
» Hyperparameter set 1) defines set of priors M©
» Hyperparameter set 1" defines set of posteriors M
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Good inference properties (cf. other models based on sets of priors)
» n— oo » 1y stretch in T1™ — 0 » precise inferences
~ larger n¥) » larger T1 » more vague inferences
> larger range of ¥ in T1®  » larger range of y in T1"
» more vague inferences
Model very easy to handle:
» Hyperparameter set 1) defines set of priors M©
» Hyperparameter set 1" defines set of posteriors M)

> ]I—I(O) - ]I—I( is easy: n(” = n(o) +n, y(”) = y(o) . (=)

n(0>+n n
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Good inference properties (cf. other models based on sets of priors)
» n— oo » 1y stretch in T1™ — 0 » precise inferences
~ larger n¥) » larger T1 » more vague inferences
> larger range of ¥ in T1®  » larger range of y in T1"
» more vague inferences
Model very easy to handle:
» Hyperparameter set 1) defines set of priors M©

» Hyperparameter set 1" defines set of posteriors M
y(O) . @)

n(0>+n n

» T1O — T is easy: n™ = n© +n, y™ =

~ Often, optimising over (n, ) € T1™ is also easy:
closed form solution for " = posterior ‘guess’ for T(m) (think: x)
when 1Y has ‘nice’ shape

ty of Technology
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Hyperparameter Set Shapes

» Set shape is crucial modeling choice:
trade-off between model complexity and model behaviour
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» Set shape is crucial modeling choice:
trade-off between model complexity and model behaviour

» 1O = n(o) X [y(o) _(O)] (Walley 1996; Quaeghebeur and de Cooman 2005):

I = [y(”) "] » optimise over [y(”),y(”)] only,
but no prior-data conflict sensitivity
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» Set shape is crucial modeling choice:
trade-off between model complexity and model behaviour

» 1O = n(o) X [y(o) _(0)] (Walley 1996; Quaeghebeur and de Cooman 2005):
I = [y( ", 7" » optimise over [y(”),y '] only,
but no prior-data conflict sensitivity
» 10 = [Q(O),ﬁ(o)] X [y(o),y(o)] (Walley 1991; Walter and Augustin 2009):
1" have non-trivial forms (banana / spotlight), but prior-data
conflict sensitivity and closed form for min / max " over T1"

For other inferences, R package 1 uck implements optimisation
over I'T™ via box-constraint optimisation over I
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» Set shape is crucial modeling choice:
trade-off between model complexity and model behaviour

» 1O = n(o) X [y(o) _(0)] (Walley 1996; Quaeghebeur and de Cooman 2005):
I = [y( ", 7" » optimise over [y(”),y '] only,
but no prior-data conflict sensitivity
» 10 = [Q(O),ﬁ(o)] X [y(o),y(o)] (Walley 1991; Walter and Augustin 2009):
1" have non-trivial forms (banana / spotlight), but prior-data
conflict sensitivity and closed form for min / max " over T1"

For other inferences, R package 1 uck implements optimisation
over I'T™ via box-constraint optimisation over I

» Other set shapes possible, but may be more difficult to handle
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Parameter set shape for strong prior-data agreement (Walter 2013, A.2)
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» Conjugate priors are a convenient tool for Bayesian inference
but there are some pitfalls
« Hyperparameters 1, y©) are easy to interpret and elicit
« Averaging property makes calculations simple, but leads to
inadequate model behaviour in case of prior-data conflict
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» Conjugate priors are a convenient tool for Bayesian inference
but there are some pitfalls
« Hyperparameters 1, y©) are easy to interpret and elicit
« Averaging property makes calculations simple, but leads to
inadequate model behaviour in case of prior-data conflict
» Sets of conjugate priors maintain advantages & mitigate issues
« Sets of posteriors adequately reflect vague prior information,
the amount of data, and prior-data conflict
» Hyperparameter set shape is important
- Reasonable choice: rectangular T1O = [n©, 7] x [y, 3]
“generalised iLUCK-models” (Walter and Augustin 2009; Walter 2013),
R package 1uck (Walter and Krautenbacher 2013)
- Bounds for prior hyperparameters (1, )
are easy to interpret and elicit
« Additional imprecison in case of prior-data conflict
leads to cautious inferences if, and only if, caution is needed
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Other models using sets of priors <o <soton

» Neighbourhood models
- set of distributions ‘close to’ a central distribution Py
« common in robust Bayesian approaches
« example: e-contamination class: {P: P = (1 — €)Py + ¢Q,Q € Q}
¢ not necessarily closed under Bayesian updating
» Density ratio class / interval of measures
» set of distributions by bounds for the density function f(9):

Mi = {f(0) : 3c € Rog : 0) < cf(0) < u(0))

 posterior set is bounded by updated [(6) and u(6)
« u(6)/1(6) is constant under updating

» size of the set does not decrease with n

» too vague posterior inferences
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» sS4 implementation of the general canonical prior parameter
structure with rectangular sets T10) = [#©, 7] x [y, 7]

» lean subclasses for concrete sample distributions
(currently implemented: scaled normal, exponential)

» available on R-Forge:

install.packages ("luck", repos="http:
//R-Forge.R-project.org")

or

install.packages ("http://download.r-forge.r-project.org/
src/contrib/luck_0.9.tar.gz", repos=NULL, type="source")
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install.packages("luck", repos="http://R-Forge.R-project.org")
install.packages("luck", repos="http://R-Forge.R-project.org")
install.packages("http://download.r-forge.r-project.org/src/contrib/luck_0.9.tar.gz", repos = NULL, type = "source")
install.packages("http://download.r-forge.r-project.org/src/contrib/luck_0.9.tar.gz", repos = NULL, type = "source")
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)

LuckModel -> LuckModelData
n0: matrix \ tauN: matrix
c 1 rawData: matrix

y0: matrix '
show ()

data: LuckModelData ¥

show () [ | 1
ScaledNormalData ExponentialData soc

plot ()

unionHdi () show () show () show ()

ScaledNormalLuckModell

ExponentiallLuckModel

singleHdi ()

singleHdi ()

singleHdi ()

TU/e

Technische Universiteit
Eindhoven
University of Technology



Strong Prior-Data Agreement Modelling -






