

Software for Generalized Bayesian Inference for Samples from Exponential Families

An object-oriented R implementation of generalized $\operatorname{iLUCK}\text{-models}$

Gero Walter

Department of Statistics Ludwig-Maximilians-University Munich

February 17th, 2009

Generalized Bayesian Inference

General Idea LUCK-models (Generalized) iLUCK-models

Demonstration

R and Object-oriented Programming The R project for Statistical Computing Object-oriented Programming The Implementation (so far)

Generalized Bayesian Inference - General Idea

Bayesian Inference on some parameter θ :

prior knowledge on θ + data x → updated knowledge on θ prior distribution $p(\theta)$ + likelihood $f(x \mid \theta)$ → posterior distribution $p(\theta \mid x)$ set of priors + likelihood → set of posteriors

Tractability: use **conjugate** priors \iff choose $p(\theta)$ such that $p(\theta \mid x)$ is from same parametric class \rightarrow update only parameters!

LUCK-models: Single Conjugate Prior $X \stackrel{iid}{\sim}$ linear, canonical exponential familiy, i.e.

$$p(x \mid \theta) \propto \exp \left\{ \langle \psi, \tau(x) \rangle - n \mathbf{b}(\psi) \right\} \qquad \left[\psi \text{ transformation of } \theta \right]$$

➡ conjugate prior:

$$p(heta) \propto \exp\left\{n^{(0)}\left[\langle\psi, \mathbf{y}^{(0)}
angle - \mathbf{b}(\psi)
ight]
ight\}$$

→ (conjugate) posterior:

$$p(\theta \mid x) \propto \exp\left\{n^{(1)}\left[\langle \psi, y^{(1)} \rangle - \mathbf{b}(\psi)\right]\right\}$$

$$y^{(1)} = \frac{n^{(0)}y^{(0)} + \tau(x)}{n^{(0)} + n}$$
 and $n^{(1)} = n^{(0)} + n$

LUCK-models: Interpretation of $y^{(0)}$ and $n^{(0)}$

y⁽⁰⁾: "main prior parameter"

- ► for samples from a N(μ , 1), $p(\mu)$ is a N($y^{(0)}, \frac{1}{p^{(0)}}$)
- For samples from a M(θ), p(θ) is a Dir(n⁽⁰⁾, y⁽⁰⁾) (y_i⁽⁰⁾ = t_j ≏ prior probability for class j, n⁽⁰⁾ = s)

 $n^{(0)}$: "prior strength" or "pseudocounts"

with $\tilde{\tau}(x) =: \frac{1}{n}\tau(x): \qquad \left[\tau(x) = \sum_{i=1}^{n}\tau(x_i)\right]$ $y^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \tilde{\tau}(x).$

A (1) < A (2) < A (2) </p>

sets of LUCK-models – iLUCK-model

iLUCK-model: vary $y^{(0)}$ in $\mathcal{Y}^{(0)}$ [$\mathcal{Y}^{(0)}$ convex] \iff allow for ambiguity on the main prior parameter

→ prior credal set contains all finite convex mixtures of $p(\theta)$ s with $y^{(0)} \in \mathcal{Y}^{(0)}$

posterior credal set easy to calculate:
 all finite convex mixtures of p(θ | x)s with

$$y^{(1)} \in \mathcal{Y}^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot \mathcal{Y}^{(0)} + \frac{n}{n^{(0)} + n} \cdot \tilde{\tau}(x)$$

unfavourable behavior in case of prior-data conflict! \Lambda

sets of LUCK-models – Generalized iLUCK-model generalized iLUCK-model:

vary $y^{(0)}$ in $\mathcal{Y}^{(0)}$ and $n^{(0)}$ in $\mathcal{N}^{(0)} \iff$ weigh prior information $\mathcal{Y}^{(0)}$ and sample information $\tilde{\tau}(x)$ in

$$y^{(1)} \in \mathcal{Y}^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot \mathcal{Y}^{(0)} + \frac{n}{n^{(0)} + n} \cdot \tilde{\tau}(x)$$

more flexible!

- → prior credal set contains all finite convex mixtures of $p(\theta)$ s with $y^{(0)} \in \mathcal{Y}^{(0)}$ and $n^{(0)} \in \mathcal{N}^{(0)}$
- → posterior credal set still quite easy to calculate: all finite convex mixtures of $p(\theta \mid x)$ s with

$$\left\{ \left(n^{(1)}, y^{(1)} \right) \middle| n^{(1)} = n^{(0)} + n, y^{(1)} = \frac{n^{(0)}y^{(0)} + \tau(x)}{n^{(0)} + n}, n^{(0)} \in \mathcal{N}^{(0)}, y^{(0)} \in \mathcal{Y}^{(0)} \right\}$$

Demonstration

Gero Walter Software for Generalized Bayesian Inference

8/13

æ

The R project for Statistical Computing

- not just a (statistical) software package, rather a full-grown programming language
- open source implementation of the (award-winning) S language
- extremely widespread in universitary research (reference implementation of new methods are often in R)
- extensions providing additional functionality can be made readily available as "packages"
- can be linked with LATEX (included package Sweave)
- can be used as imperative or as object-oriented language

- 4 同 1 4 日 1 4 日

Imperative vs. Object-oriented Programming

imperative: do this, then that
 functions (on arguments)

object-oriented: create 'objects', do things with themblueprints for objects called 'classes'

objects created according to a blueprint are called an 'instance'

example:

banking company administrating their customers' accounts

class: BankAccount

instances: bank account for customer A bank account for customer B

The R project for Statistical Computing Object-oriented Programming The Implementation (so far)

Object-oriented Programming: Class hierarchies

The R project for Statistical Computing Object-oriented Programming The Implementation (so far)

Implementation – Class Structure

The R project for Statistical Computing Object-oriented Programming The Implementation (so far)

Implementation – Class Structure

< ロ > < 同 > < 回 > < 回 >