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Introduction

» Bernoulli observations: 0/1 observations
(success yes/no, head/tails when tossing a coin)
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Introduction

» Bernoulli observations: 0/1 observations
(success yes/no, head/tails when tossing a coin)

» given: a set of observations (12 out of 16 tosses were heads)

» additional to observations, we have strong prior information
(we are convinced that P(heads) should be around 0.75)

> interested in probability P that the next observation is a head.
(predictive probability!)

» prior-data conflict: if P(heads) for the coin is actually very
different from our prior guess (i.e., prior information and data
are in conflict), this should show up in the predictive
inferences (probability P and, e.g., confidence intervals)
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» one standard statistical model for this situation:
Beta-Bernoulli/Binomial Model

> here in parameterization used, e.g., by Walley:
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» one standard statistical model for this situation:
Beta-Bernoulli/Binomial Model

> here in parameterization used, e.g., by Walley:

Data: | s ~ Binom(p,n)
conjugate prior: p ~ Beta(n(o), y(o))

posterior: ‘ pls ~ Beta(n(")7 y(n))
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» one standard statistical model for this situation:
Beta-Bernoulli/Binomial Model

> here in parameterization used, e.g., by Walley:

Data: | s ~ Binom(p,n)
conjugate prior: p ~ Beta(n(o), y(o))

posterior: ‘ pls ~ Beta(n(")7 y(n))

(0)
() LU () B R () I ()
P_y n(o)—|—n y n(0)+n n’ " meEn
(n) ()
yi(1 = y") _ . -
Var(p | s) = a1 = no reaction to prior-data conflict!
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> two-dimensional interval
seems natural, but generally
any shape possible
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> two-dimensional interval
seems natural, but generally
any shape possible

» pdc-IBBM goes “bananas”
irrespective of n or n(©)

» a more tolerant shape?
= the “anteater” shape:

> “anteater” is difficult to elicit

=» other approach:
combine predictive inferences

Issues and alternatives University

12 out of 16 é
D ou O\b

y(© resp. (")
0.0 02 04 06 08 1.0

5 10 15 20 25
n(© resp. n(m

Prior-Data Conflict in Predictive Bernoulli Inferences 7/10



[ ]
W Durham|

Weighted Inference / (Imprecise) Inference Fusion

University

Combine predictive inferences of

1. an uninformative model =p [PY, P"] (near-ignorance prior)

2. an informative model =» [P’ ﬁi] (informative prior)
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Combine predictive inferences of

1. an uninformative model =p [PY, P"] (near-ignorance prior)

2. an informative model =» [P’ ﬁi] (informative prior)
by weighing them

P, =aP'+(1—a)P"

P, = oP’ +(1- a)ﬁu
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Combine predictive inferences of

1. an uninformative model =p [PY, P"] (near-ignorance prior)
2. an informative model = [P’ P'] (informative prior)
by weighing them imprecisely:

P= min P

LIS
a€lay,ar]

where P, =aP' + (1 - a)P¥

P= max P, where Po=aP + (1—a)P”

a€lay,ar]
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Comparison with IBBMs

0 — > s S S, n

The predictive probability plot (PPP) illustrates model behaviour.

Prior-Data Conflict in Predictive Bernoulli Inferences 9/10



2R
W Durham|

Summary, Outlook

University

IBBMs Weighted Inference

> sets of BBMs: vary » combine BBM inferences, not
parameters n(o), y(o) BBM models

» can be generalized to any » can be used to combine
distribution from exponential any two predictive inferences
family: same weighted from any model,
average structure for y(") on any event of interest
(Quaghebeur & de Cooman
2005)

» generalization of pdc-IBBM: » possible source for PY / P
Walter, Augustin (2009) NPI (Coolen & Augustin 2009)
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