

On Prior-Data Conflict in Predictive Bernoulli Inferences

Gero Walter, Thomas Augustin

Frank P.A. Coolen

 $\label{eq:Department} Department of Statistics \\ Ludwig-Maximilians-Universität München (LMU)$

Department of Mathematics Durham University

July 28th, 2011

► Bernoulli observations: 0/1 observations (success yes/no, head/tails when tossing a coin)

- ► Bernoulli observations: 0/1 observations (success yes/no, head/tails when tossing a coin)
- given: a set of observations (12 out of 16 tosses were heads)

- ► Bernoulli observations: 0/1 observations (success yes/no, head/tails when tossing a coin)
- given: a set of observations (12 out of 16 tosses were heads)
- ▶ additional to observations, we have strong prior information (we are convinced that P(heads) should be around 0.75)

- ► Bernoulli observations: 0/1 observations (success yes/no, head/tails when tossing a coin)
- given: a set of observations (12 out of 16 tosses were heads)
- ▶ additional to observations, we have strong prior information (we are convinced that P(heads) should be around 0.75)
- interested in probability P that the next observation is a head. (predictive probability!)

- ► Bernoulli observations: 0/1 observations (success yes/no, head/tails when tossing a coin)
- given: a set of observations (12 out of 16 tosses were heads)
- ▶ additional to observations, we have strong prior information (we are convinced that P(heads) should be around 0.75)
- interested in probability P that the next observation is a head. (predictive probability!)
- prior-data conflict: if P(heads) for the coin is actually very different from our prior guess (i.e., prior information and data are in conflict), this should show up in the predictive inferences (probability P and, e.g., confidence intervals)

- one standard statistical model for this situation: Beta-Bernoulli/Binomial Model
- here in parameterization used, e.g., by Walley:

- one standard statistical model for this situation: Beta-Bernoulli/Binomial Model
- here in parameterization used, e.g., by Walley:

Data :
$$s \sim \mathsf{Binom}(p, n)$$

conjugate prior: $p \sim \mathsf{Beta}(n^{(0)}, y^{(0)})$
posterior: $p \mid s \sim \mathsf{Beta}(n^{(n)}, y^{(n)})$

$$y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \quad n^{(n)} = n^{(0)} + n$$

- one standard statistical model for this situation: Beta-Bernoulli/Binomial Model
- here in parameterization used, e.g., by Walley:

Data:
$$s \sim \mathsf{Binom}(p, n)$$

conjugate prior: $p \sim \mathsf{Beta}(n^{(0)}, y^{(0)})$
posterior: $p \mid s \sim \mathsf{Beta}(n^{(n)}, y^{(n)})$

$$P = y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \quad n^{(n)} = n^{(0)} + n$$

- one standard statistical model for this situation: Beta-Bernoulli/Binomial Model
- here in parameterization used, e.g., by Walley:

Data :
$$s \sim \mathsf{Binom}(p, n)$$

conjugate prior: $p \sim \mathsf{Beta}(n^{(0)}, y^{(0)})$
posterior: $p \mid s \sim \mathsf{Beta}(n^{(n)}, y^{(n)})$

$$P = y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \quad n^{(n)} = n^{(0)} + n$$

$$Var(p \mid s) = \frac{y^{(n)}(1 - y^{(n)})}{p^{(n)} + 1}$$
 \longrightarrow no reaction to prior-data conflict!

no conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.75$ data $s/n = 12/16 = 0.75$

no conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.75$ data $s/n = 12/16 = 0.75$

$$n^{(n)} = 24, \ y^{(n)} = 0.75$$

no conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.75$ data $s/n = 12/16 = 0.75$

$$n^{(n)} = 24, y^{(n)} = 0.75$$

prior-data conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.25$ data $s/n = 16/16 = 1$

no conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.75$ data $s/n = 12/16 = 0.75$

$$n^{(n)} = 24, y^{(n)} = 0.75$$

prior-data conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.25$ data $s/n = 16/16 = 1$

no conflict:

prior $n^{(0)} = 8$, $y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75

no conflict:

prior $n^{(0)} = 8$, $y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75

$$n^{(n)} = 24, \ y^{(n)} \in [0.73, 0.77]$$

no conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} \in [0.7, 0.8]$ data $s/n = 12/16 = 0.75$

$$n^{(n)} = 24, \ y^{(n)} \in [0.73, 0.77]$$

prior-data conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} \in [0.2, 0.3]$ data $s/n = 16/16 = 1$

no conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} \in [0.7, 0.8]$ data $s/n = 12/16 = 0.75$

$$n^{(n)} = 24, \ y^{(n)} \in [0.73, 0.77]$$

prior-data conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} \in [0.2, 0.3]$
data $s/n = 16/16 = 1$

pdc-Imprecise BBM (pdc-IBBM): Walley 1991, Ch.5.4.3

no conflict:

prior $n^{(0)} \in [4,8]$, $y^{(0)} \in [0.7,0.8]$ data s/n = 12/16 = 0.75

pdc-Imprecise BBM (pdc-IBBM): Walley 1991, Ch.5.4.3

no conflict:

prior $n^{(0)} \in [4,8]$, $y^{(0)} \in [0.7,0.8]$ data s/n = 12/16 = 0.75

"spotlight" shape

no conflict:

prior $n^{(0)} \in [4,8]$, $y^{(0)} \in [0.7,0.8]$ data s/n = 12/16 = 0.75

"spotlight" shape

prior-data conflict:

prior $n^{(0)} \in [4, 8]$, $y^{(0)} \in [0.2, 0.3]$ data s/n = 16/16 = 1

pdc-Imprecise BBM (pdc-IBBM): Walley 1991, Ch.5.4.3

no conflict:

prior $n^{(0)} \in [4, 8], y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75

"spotlight" shape

prior-data conflict:

prior $n^{(0)} \in [4, 8], v^{(0)} \in [0.2, 0.3]$ data s/n = 16/16 = 1

"banana" shape

 two-dimensional interval seems natural, but generally any shape possible

- two-dimensional interval seems natural, but generally any shape possible
- pdc-IBBM goes "bananas" irrespective of n or n⁽⁰⁾

- two-dimensional interval seems natural, but generally any shape possible
- ▶ pdc-IBBM goes "bananas" irrespective of n or $n^{(0)}$
- a more tolerant shape?
 - **▶** the "anteater" shape:

- two-dimensional interval seems natural, but generally any shape possible
- pdc-IBBM goes "bananas" irrespective of n or n⁽⁰⁾
- ► a more tolerant shape?
 - **▶** the "anteater" shape:

- two-dimensional interval seems natural, but generally any shape possible
- pdc-IBBM goes "bananas" irrespective of n or n⁽⁰⁾
- ➤ a more tolerant shape?
 ➤ the "anteater" shape:
- "anteater" is difficult to elicit
 other approach:
 combine predictive inferences

Weighted Inference / (Imprecise) Inference Fusion

Combine predictive inferences of

- 1. an uninformative model $\longrightarrow [\underline{P}^u, \overline{P}^u]$ (near-ignorance prior)
- 2. an informative model \longrightarrow $[\underline{P}^i, \overline{P}^i]$ (informative prior)

Weighted Inference / (Imprecise) Inference Fusion

Combine predictive inferences of

- 1. an uninformative model $\longrightarrow [\underline{P}^u, \overline{P}^u]$ (near-ignorance prior)
- 2. an informative model \longrightarrow $[\underline{P}^i, \overline{P}^i]$ (informative prior)

by weighing them

$$\underline{\mathsf{P}}_{\alpha} = \alpha \underline{\mathsf{P}}^{i} + (1 - \alpha)\underline{\mathsf{P}}^{u}$$

$$\overline{\mathsf{P}}_{\alpha} = \alpha \overline{\mathsf{P}}^{i} + (1 - \alpha) \overline{\mathsf{P}}^{u}$$

Weighted Inference / (Imprecise) Inference Fusion

Combine predictive inferences of

- 1. an uninformative model $\longrightarrow [\underline{P}^u, \overline{P}^u]$ (near-ignorance prior)
- 2. an informative model \longrightarrow $[\underline{P}^i, \overline{P}^i]$ (informative prior)

by weighing them **imprecisely**:

$$\underline{P} = \min_{\alpha \in [\alpha_I, \alpha_r]} \underline{P}_{\alpha}, \quad \text{where} \quad \underline{P}_{\alpha} = \alpha \underline{P}^i + (1 - \alpha) \underline{P}^u$$

$$\overline{\mathsf{P}} = \max_{\alpha \in [\alpha_I, \alpha_r]} \overline{\mathsf{P}}_{\alpha}, \qquad \text{where} \qquad \overline{\mathsf{P}}_{\alpha} = \alpha \overline{\mathsf{P}}^i + (1 - \alpha) \overline{\mathsf{P}}^u$$

The predictive probability plot (PPP) illustrates model behaviour.

Summary, Outlook

IBBMs

- ► sets of BBMs: vary parameters $n^{(0)}$, $y^{(0)}$
- ▶ can be generalized to any distribution from exponential family: same weighted average structure for y⁽ⁿ⁾ (Quaghebeur & de Cooman 2005)
- generalization of pdc-IBBM: Walter, Augustin (2009)

Weighted Inference

- combine BBM inferences, not BBM models
- can be used to combine any two predictive inferences from any model, on any event of interest
- possible source for P^u / Pⁱ:
 NPI (Coolen & Augustin 2009)

