

Linear Regression Analysis under Sets of Conjugate Priors

Gero Walter, Thomas Augustin, Annette Peters

Ludwig-Maximilians-University Munich Environment and Health, Neuherberg

Department of Statistics GSF – National Research Center for

July 17th, 2007

introducing Annette Peters

- ► Head of Research Unit 'Epidemiology of Air Pollution Health Effects' of GSF - Institute of Epidemiology
- \triangleright research on health effects of fine and ultrafine particles $(AIRGENE, EPA STAR)$ and alpha-particles (radon)

introducing Gero Walter

current PhD. student under the guidance of Thomas Augustin Department of Statistics, Ludwig-Maximilians-University (LMU) Munich Research group on interval probabilities (T. Augustin, K. Weichselberger, A. Wallner, C. Strobl, R. Hable)

introducing Gero Walter

- 2007 Receiving of *Diplom* (equivalent to a Master's degree)
- ²⁰⁰⁶ Diploma thesis " Bayes-Regression mit Mengen von Prioris Ein Beitrag zur Statistik unter komplexer Unsicherheit"
- 2005 Internship at GSF National Research Center for Environment and Health, Research Unit "Epidemiology of Air Pollution Health Effects", head Dr. A. Peters (AIRGENE study group)
- '00 '07 Student of Statistics at the the Department of Statistics, LMU
- '02 '03 University of Palermo, Italy (Erasmus programme)

 $\left\langle \left\langle \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle +\left\langle \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\rangle +\left\langle \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\rangle \right)$

Research interests

- \triangleright imprecise probability models for linear and generalized linear regression
- Robust Bayesian approaches
- \triangleright modeling of prior-data conflict
- Bayesian variable selection $(LASSO, ...)$
- \triangleright Statistics in Epidemiology

Linear Regression Analysis under Sets of Conjugate Priors

\blacktriangleright Linear Regression Analysis

- \blacktriangleright linear regression & generalizations
- \blacktriangleright estimation methods
- \triangleright Conjugate Priors
	- \blacktriangleright Bayesian estimation
	- \blacktriangleright LUCK-models
- \triangleright Sets of Conjugate Priors
	- \blacktriangleright method of Quaeghebeur and de Cooman
		- \blacktriangleright direct application
		- \blacktriangleright generalizing the standard approach
	- \blacktriangleright the imprecise normal regression model
- ▶ Application and Concluding Remarks

つへへ

Linear regression

イロメ イ母メ イヨメ イヨ

つへへ

Linear regression

イロメ イ母メ イヨメ イヨ

つへへ

Linear regression

 \leftarrow \Box \rightarrow

 \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow

つへへ

Linear regression

 β_1 interpretable as increment on z if x increases one unit

4 17 18

す イ テート イ テート

つへへ

メロメ メ母メ メミメ メミメ

Linear regression

$$
z_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} + \varepsilon_i,
$$

$$
(x_{i1},...,x_{ip}) =: x_i
$$

$$
\begin{cases} (x_{i1},...,x_{ip}) =: x_i \\ (x_{i1},...,x_{ip}) =: \beta \\ (x_{i1},...,x_{ip}) =: \beta \\ \text{regression coefficients} \\ \text{stochastic error term} \end{cases}
$$

$$
z = \mathbf{X}\beta + \varepsilon, \quad \mathbf{X} \in \mathbb{R}^{k \times p}, \ \beta \in \mathbb{R}^p, \ z \in \mathbb{R}^k, \ \varepsilon \in \mathbb{R}^k;
$$

 $\varepsilon_i \stackrel{i.i.d.}{\sim} \textsf{N}(0,\sigma^2) \quad \Longrightarrow \quad \varepsilon \sim \textsf{N}_k(\mathbf{0},\sigma^2\mathbf{I})) \quad (\sigma^2 \; \mathsf{known})$ (one) categorial regressor $x \rightarrow ANOVA$

 299

≞

Linear regression

$$
z_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} + \varepsilon_i,
$$

$$
(x_{i1},...,x_{ip}) =: x_i
$$
\n
$$
(x_{i1},...,x_{ip}) =: x_i
$$
\n
$$
(x_{i1},...,x_{ip}) =: \beta
$$
\n
$$
(x_{i2},...,x_{ip}) =: \beta
$$
\n
$$
(x_{i3},...,x_{ip}) =: \beta
$$
\n
$$
(x_{i4},...,x_{i5}) =: \beta
$$
\n
$$
(x_{i4},...,x_{i5}) =: \beta
$$
\n
$$
(x_{i5},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i2},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i2},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i2},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i2},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i2},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i2},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i2},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i2},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i2},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i1},...,x_{i6}) =: \beta
$$
\n
$$
(x_{i2},...,x_{i6}) =: \
$$

$$
\mathbf{z} = \mathbf{X}\boldsymbol{\beta} + \varepsilon, \quad \mathbf{X} \in \mathbb{R}^{k \times p}, \ \boldsymbol{\beta} \in \mathbb{R}^p, \ \mathbf{z} \in \mathbb{R}^k, \ \varepsilon \in \mathbb{R}^k;
$$

$$
\varepsilon_i \stackrel{i.i.d.}{\sim} \mathsf{N}(0, \sigma^2) \implies \varepsilon \sim \mathsf{N}_k(\mathbf{0}, \sigma^2 \mathbf{I})) \quad (\sigma^2 \text{ known})
$$
\n(one) categorical regressor $x \blacktriangleright$ ANOVA

イロン イ何ン イヨン イヨン

Generalizations of linear regression

- non-normal response (GLM) (categorical \triangleright classification)
- complex correlation structure of observations (e.g., repeated measurements, spatial,. . .)
- \triangleright non-linear regressors (GAM)
- \blacktriangleright survival data analysis

one of the most important inference tools in all areas of application

Estimation of β

► Least Squares (LS) method: minimize $\sum_{i=1}^{k} (z_i - x_i \beta)^2$:

$$
\hat{\beta}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T z.
$$

- \triangleright Maximum Likelihood (ML) method: maximize likelihood $z | β \sim N_k(\mathbf{X}β, σ²\mathbf{I})$ (**X** non-stochastic) \triangleright $\hat{β}_{LS}$
- $▶$ Bayesian method: choose prior on β , maximize posterior (take posterior expected value)
	- \triangleright often: weak prior information \triangleright "objective Bayesian" paradigm: take "noninformative" prior $\beta \propto {\sf const.}$ $\qquad \blacktriangleright \quad \hat{\beta}_{\sf LS}$
	- \triangleright conjugate prior: convenient choice, posterior of same parametrical class as prior \blacktriangleright choice of parameters?

イロト イタト イモト イモト

 $4.49 \times 4.79 \times 4.$

ה מר

Estimation of β

► Least Squares (LS) method: minimize $\sum_{i=1}^{k} (z_i - x_i \beta)^2$:

$$
\hat{\beta}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T z.
$$

- \triangleright Maximum Likelihood (ML) method: maximize likelihood $z | β \sim N_k(\mathbf{X}β, σ²\mathbf{I})$ (**X** non-stochastic) \triangleright $\hat{β}_{LS}$
- $▶$ Bayesian method: choose prior on β , maximize posterior (take posterior expected value)
	- \triangleright often: weak prior information \triangleright "objective Bayesian" paradigm: take "noninformative" prior $\beta \propto {\sf const.}$ $\qquad \blacktriangleright \quad \hat{\beta}_{\sf LS}$
	- \triangleright conjugate prior: convenient choice, posterior of same parametrical class as prior
		- \blacktriangleright choice of parameters?

To overcome "dogma of ideal precision" (Walley), consider sets of priors, here: by sets of parameters

[Bayesian Estimation with Conjugate Priors](#page-16-0)

つくい

Conjugate Priors

\blacktriangleright Linear Regression Analysis

- linear regression & generalizations
- \blacktriangleright estimation methods
- \triangleright Conjugate Priors
	- \blacktriangleright Bayesian estimation
	- \blacktriangleright LUCK-models
- \triangleright Sets of Conjugate Priors
	- \blacktriangleright method of Quaeghebeur and de Cooman
		- \blacktriangleright direct application
		- \blacktriangleright generalizing the standard approach
	- \blacktriangleright the imprecise normal regression model
- ▶ Application and Concluding Remarks

Bayesian estimation with conjugate priors

$$
p(\vartheta \mid w) \propto f(w \mid \vartheta) \cdot p(\vartheta) \tag{1}
$$

we distinguish certain standard situations (called *models with* 'Linearly Updated Conjugate prior Knowledge' (LUCK) here) of Bayesian updating with classical probabilities, where prior and posterior fit nicely together in the sense that

- i) they belong to the same class of parametric distributions (conjugate prior)
- ii) the updating of one parameter of the prior is linear.

 \mathcal{A} and \mathcal{A} in the set of \mathcal{B}

 QQ

Definition (LUCK-model)

- **Example 1** classical Bayesian inference on ϑ based on sample w as in [\(1\)](#page-16-1)
- rior $p(\vartheta)$ characterized by (vectorial) parameter $\vartheta^{(0)}$.

Call $(p(\vartheta), p(\vartheta \,|\, w))$ LUCK-model of size q in natural parameter ψ with prior param.s $n^{(0)} \in \mathbb{R}^+$ and $y^{(0)}$ and sample statistic $\tau(w)$ ⇐⇒

 \exists $q\in\mathbb{N},$ transformations $\vartheta\mapsto\psi,$ $\vartheta\mapsto$ $\mathsf{b}(\psi),$ $\vartheta^{(0)}\mapsto$ $(n^{(0)},$ $y^{(0)})$ such that

$$
p(\vartheta) \propto \exp\left\{ n^{(0)} \left[\langle \psi, y^{(0)} \rangle - \mathbf{b}(\psi) \right] \right\} \tag{2}
$$

イロト イタト イモト イモト

and
$$
p(\vartheta | w) \propto \exp \{ n^{(1)} [\langle \psi, y^{(1)} \rangle - \mathbf{b}(\psi)] \}
$$
, where (3)

$$
n^{(1)} = n^{(0)} + q \quad \text{and} \quad y^{(1)} = \frac{n^{(0)}y^{(0)} + \tau(w)}{n^{(0)} + q}. \quad (4)
$$

[Method of Quaeghebeur and de Cooman](#page-19-0) [Conjugate Priors for Linear Regression](#page-23-0) The [Imprecise Normal Regression Model](#page-25-0)

つくい

Sets of Conjugate Priors

\blacktriangleright Linear Regression Analysis

- linear regression & generalizations
- \blacktriangleright estimation methods
- \triangleright Conjugate Priors
	- \blacktriangleright Bayesian estimation
	- \blacktriangleright LUCK-models
- ▶ Sets of Conjugate Priors
	- \blacktriangleright method of Quaeghebeur and de Cooman
		- \blacktriangleright direct application
		- \blacktriangleright generalizing the standard approach
	- \blacktriangleright the imprecise normal regression model
- ▶ Application and Concluding Remarks

Method of Quaeghebeur and de Cooman

^I Quaeghebeur and de Cooman (2005) developed a method to create sets of conjugate priors for exponential family sample distributions that is easy to handle

central idea: formulate prior not in classical parameters, but in so-called natural parameters $y^{(0)}$ and $n^{(0)}$ in [\(2\)](#page-17-1) and [\(3\)](#page-17-2) **I** update step is linear **I** inf \rightarrow inf and sup \rightarrow sup

- \triangleright very general and powerful model, as exponential family includes most of every-day distributions
- \triangleright IDM contained as special case of multinomial sampling model with conjugate Dirichlet priors $(y^{(0)} \leftrightarrow t, \; \eta^{(0)} \leftrightarrow s)$

←ロ ▶ (何 ▶ (ヨ) (ヨ

 209

Extension of the Method of Quaeghebeur and de Cooman

note: argument is

- \triangleright not limited to i.i.d. samples
- \triangleright not limited to the way of contruction of priors

 -1000

 \sim **ALCOHOL:**

Extension of the Method of Quaeghebeur and de Cooman

note: argument is

- \triangleright not limited to i.i.d. samples
- \triangleright not limited to the way of contruction of priors

idea: use method for LUCK-models, and apply to regression

A + + = + +

 Ω

Procedure of Quaeghebeur and de Cooman

- \blacktriangleright define set of priors via set of parameters
- \triangleright define this set of parameters by lower and upper bounds
- \triangleright lower and upper bounds of set of posterior parameters can be obtained directly from the update formula:

$$
y^{(1)} = \frac{n^{(0)}y^{(0)} + \tau(w)}{n^{(0)} + q}
$$

Just as in the IDM, minimization and maximization problems on the set of posteriors are reduced to minimization and maximization problems on the set of priors when parameter $y^{(1)}$ (or a linear function of it) is the quantity of interest.

イロメ イ何メ イヨメ イヨメ

Conjugate Priors for Linear Regression

(at least) two possibilities for $LUCK$ -model for linear regression:

- 1. construct prior to likelihood as described in Quaeghebeur and de Cooman (2005) / Bernardo and Smith (1993)
	- \triangleright **X** is part of prior; can be shown to be normal at least for $p = 2$ \triangleright approach only sketched
- 2. take well-known standard conjugate prior

 \blacktriangleright fits to method of Quaeghebeur and de Cooman, as it can be shown to constitue a $LUCK$ -model for arbitrary number p of regressors (Theorem 2)

- ④ 伊 ≯ ④ 重 ≯ ④ 重

[2.](#page-23-1) Standard Conjugate Prior

called normal regression model in the paper

$$
\beta \sim N_{\text{p}}\left(\beta^{(0)}, \sigma^2\pmb{\Sigma}^{(0)}\right)
$$

$$
\beta \,|\, z \sim N_{\rho}\left(\beta^{(1)}, \sigma^2 \Sigma^{(1)}\right) \,,
$$

where the updated parameters $\beta^{(1)}$ and $\boldsymbol{\Sigma}^{(1)}$ are obtained as

$$
\beta^{(1)} = \left(\mathbf{X}^T \mathbf{X} + \mathbf{\Lambda}^{(0)}\right)^{-1} \left(\mathbf{X}^T z + \mathbf{\Lambda}^{(0)} \beta^{(0)}\right)
$$

$$
\mathbf{\Sigma}^{(1)} = \left(\mathbf{X}^T \mathbf{X} + \mathbf{\Lambda}^{(0)}\right)^{-1},
$$

 $\boldsymbol{\Lambda}^{(0)} = \boldsymbol{\Sigma}^{(0)}{}^{-1}$ being the so-called *precision matrix*.

イロメ イ母メ イヨメ イヨ

.

つくい

The Imprecise Normal Regression Model

Theorem

Fixing a value n⁽⁰⁾, $(p(\beta), p(\beta | z))$ constitutes a LUCK-model of size 1 with prior parameters

$$
y^{(0)} = \frac{1}{n^{(0)}} \left(\begin{array}{c} \mathbf{\Lambda}^{(0)} \\ \mathbf{\Lambda}^{(0)} \beta^{(0)} \end{array} \right) =: \left(\begin{array}{c} y_a^{(0)} \\ y_b^{(0)} \end{array} \right)
$$

and $n^{(0)}$ and sample statistic

$$
\tau(z) = \tau(\mathbf{X}, z) = \left(\begin{array}{c} \mathbf{X}^T \mathbf{X} \\ \mathbf{X}^T z \end{array}\right) =: \left(\begin{array}{c} \tau_a(\mathbf{X}, z) \\ \tau_b(\mathbf{X}, z) \end{array}\right)
$$

Proof: The proof is given in Walter (2006) and Walter (2007B)

'Translation' Issues

- 1. Express prior knowledge on β by a set of $\beta^{(0)}$'s and $\pmb{\Lambda}^{(0)}$'s.
- 2. "Translate" this set into set of $y^{(0)}$'s such that resulting set $\mathcal{Y}^{(0)}$ consists only of admissible combinations of parameters (positive definiteness of $\boldsymbol{\Lambda}^{(0)}$, bounding of $\mathcal{Y}^{(0)}$ as advocated by Quaeghebeur and de Cooman)
- 3. Update each $y^{(0)}$ in $\mathcal{Y}^{(0)}$ by [\(4\)](#page-17-3) linearly to $y^{(1)}$.
- 4. "Retranslate" set $\mathcal{Y}^{(1)}$ into an interpretable set of values of $\beta^{(1)}$ and $\pmb{\Lambda}^{(1)}.$
- 2. highly komplex for arbitrary p
- **Example 1** analytical results derived for $p = 2$ (with further simplifications).
- \triangleright properties of resulting model very plausible.

イロト イタト イモト イモト

Application to Data from the AIRGENE Study

AIRGENE: EU financed panel study

air pollutants inflammation markers in myocardial infarction survivors

but:

inflammation markers \longleftrightarrow BMI (Body-Mass-Index) and age

 \triangleright must be taken into account to adjust air pollutants \longrightarrow inflammation markers.

Model:

$$
\log(\mathtt{fib})_i = [\underline{\beta}_0,\,\overline{\beta}_0] + \mathtt{age}_i \cdot [\underline{\beta}_{\mathtt{age}},\,\overline{\beta}_{\mathtt{age}}] + \mathtt{bmi}_i \cdot [\underline{\beta}_{\mathtt{bmi}},\,\overline{\beta}_{\mathtt{bmi}}] + \varepsilon_i
$$

何 ▶ ヨ ヨ ▶ ヨ

 299

 \equiv

Concluding Remarks: Overview

\blacktriangleright Linear Regression Analysis

- \blacktriangleright linear regression & generalizations
- \blacktriangleright estimation methods
- \triangleright Conjugate Priors
	- \blacktriangleright Bayesian estimation
	- \blacktriangleright LUCK-models
- \triangleright Sets of Conjugate Priors
	- \blacktriangleright method of Quaeghebeur and de Cooman
		- \blacktriangleright direct application
		- \blacktriangleright generalizing the standard approach
	- \blacktriangleright the imprecise normal regression model
- ▶ Application and Concluding Remarks

Concluding Remarks: Method of QdC and Prior Data Conflict

Quaeghebeur and de Cooman vary $y^{(0)}$ in a set and fix $n^{(0)}$ (IDM: vary t_1, \ldots, t_k , fix s)

 \triangleright insufficient behavior in case of prior-data conflict, as

$$
\overline{y}^{(1)} - \underline{y}^{(1)} = \frac{n^{(0)} (\overline{y}^{(0)} - \underline{y}^{(0)})}{n^{(0)} + n}
$$

when $y^{(0)}$ varies between $y^{(0)}$ and $\overline{y}^{(0)}$

imprecision decreases by same amount for any sample of size n

possible solution: vary $n^{(0)}$ in addition: to be explored in generality, but already done by Walley (1991, Ch. 5.4) for two-parameter IDM. updating of $y^{(0)}$ non-linear!

イロメ イ押メ イヨメ イヨ