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introducing Annette Peters

I Head of Research Unit ‘Epidemiology of Air Pollution Health
Effects’ of GSF - Institute of Epidemiology

I research on health effects of fine and ultrafine particles
(airgene, epa star) and alpha-particles (radon)
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introducing Gero Walter

current PhD. student under the guidance of Thomas Augustin
Department of Statistics,
Ludwig-Maximilians-University (LMU) Munich
Research group on interval probabilities (T. Augustin, K.
Weichselberger, A. Wallner, C. Strobl, R. Hable)

Gero Walter, Thomas Augustin, Annette Peters Linear Regression with Sets of Conjugate Priors 3/31



Linear Regression
Conjugate Priors

Sets of Conjugate Priors
Application and Concluding Remarks

introducing Gero Walter

2007 Receiving of Diplom (equivalent to a Master’s degree)

2006 Diploma thesis
”
Bayes-Regression mit Mengen von Prioris –

Ein Beitrag zur Statistik unter komplexer Unsicherheit“

2005 Internship at GSF – National Research Center for
Environment and Health,
Research Unit “Epidemiology of Air Pollution Health Effects”,
head Dr. A. Peters (AIRGENE study group)

’00 – ’07 Student of Statistics at the the Department of Statistics, LMU

’02 – ’03 University of Palermo, Italy (Erasmus programme)
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Research interests

I imprecise probability models for linear and generalized linear
regression

I Robust Bayesian approaches

I modeling of prior-data conflict

I Bayesian variable selection (lasso, . . . )

I Statistics in Epidemiology
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Linear Regression Analysis under Sets of Conjugate Priors

I Linear Regression Analysis
I linear regression & generalizations
I estimation methods

I Conjugate Priors
I Bayesian estimation
I luck-models

I Sets of Conjugate Priors
I method of Quaeghebeur and de Cooman

I direct application
I generalizing the standard approach

I the imprecise normal regression model

I Application and Concluding Remarks
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Basics & Generalizations
Estimation of Regression Coefficients

Linear regression
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zi = β0 + xi · β1 + εi
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β1 interpretable as increment on z if x increases one unit
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Basics & Generalizations
Estimation of Regression Coefficients

Linear regression

zi = β1xi1 + β2xi2 + . . .+ βpxip + εi ,

zi obs. i of response (dependent variable,. . . )
(xi1, . . . , xip) =: xi obs. i of regressors j = 1, . . . , p

(independent variables,. . . )
(β1, . . . , βp) =: β regression coefficients

εi stochastic error term

z = Xβ + ε , X ∈ IRk×p, β ∈ IRp, z ∈ IRk , ε ∈ IRk ;

εi
i .i .d .∼ N(0, σ2) =⇒ ε ∼ Nk(0, σ2I)) (σ2 known)

(one) categorial regressor x I ANOVA
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Basics & Generalizations
Estimation of Regression Coefficients

Generalizations of linear regression

I non-normal response (GLM) (categorical I classification)

I complex correlation structure of observations (e.g., repeated
measurements, spatial,. . . )

I non-linear regressors (GAM)

I survival data analysis

one of the most important inference
tools in all areas of application
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Basics & Generalizations
Estimation of Regression Coefficients

Estimation of β

I Least Squares (LS) method: minimize
∑k

i=1(zi − xi β)2:

β̂LS = (XTX)−1XTz .

I Maximum Likelihood (ML) method: maximize likelihood
z |β ∼ Nk(Xβ, σ2I) (X non-stochastic) I β̂LS

I Bayesian method: choose prior on β, maximize posterior (take
posterior expected value)

I often: weak prior information I“objective Bayesian” paradigm:
take “noninformative” prior β ∝ const. I β̂LS

I conjugate prior: convenient choice,
posterior of same parametrical class as prior
I choice of parameters?

To overcome “dogma of ideal precision” (Walley),
consider sets of priors, here: by sets of parameters
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Bayesian Estimation with Conjugate Priors
luck-models

Conjugate Priors

I Linear Regression Analysis
I linear regression & generalizations
I estimation methods
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I Bayesian estimation
I luck-models

I Sets of Conjugate Priors
I method of Quaeghebeur and de Cooman

I direct application
I generalizing the standard approach

I the imprecise normal regression model

I Application and Concluding Remarks
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Bayesian Estimation with Conjugate Priors
luck-models

Bayesian estimation with conjugate priors

p(ϑ |w) ∝ f (w |ϑ) · p(ϑ) (1)

we distinguish certain standard situations (called models with
‘Linearly Updated Conjugate prior Knowledge’ (luck) here) of
Bayesian updating with classical probabilities, where prior and
posterior fit nicely together in the sense that

i) they belong to the same class of parametric distributions
(conjugate prior)

ii) the updating of one parameter of the prior is linear.
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Bayesian Estimation with Conjugate Priors
luck-models

Definition (luck-model)

I classical Bayesian inference on ϑ based on sample w as in (1)

I prior p(ϑ) characterized by (vectorial) parameter ϑ(0).

Call
(
p(ϑ), p(ϑ |w)

)
luck-model of size q in natural parameter ψ

with prior param.s n(0) ∈ IR+ and y (0) and sample statistic τ(w)
⇐⇒
∃ q ∈ IN, transformations ϑ 7→ ψ, ϑ 7→ b(ψ), ϑ(0) 7→ (n(0), y (0))
such that

p(ϑ) ∝ exp
{
n(0)
[
〈ψ, y (0)〉 − b(ψ)

]}
(2)

and p(ϑ |w) ∝ exp
{
n(1)
[
〈ψ, y (1)〉 − b(ψ)

]}
, where (3)

n(1) = n(0) + q and y (1) =
n(0)y (0) + τ(w)

n(0) + q
. (4)
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Method of Quaeghebeur and de Cooman
Conjugate Priors for Linear Regression
The Imprecise Normal Regression Model

Method of Quaeghebeur and de Cooman

I Quaeghebeur and de Cooman (2005) developed a method to
create sets of conjugate priors for exponential family sample
distributions that is easy to handle

central idea: formulate prior not in classical parameters, but
in so-called natural parameters y (0) and n(0) in (2) and (3)
I update step is linear I inf −→ inf and sup −→ sup

I very general and powerful model, as exponential family
includes most of every-day distributions

I IDM contained as special case of multinomial sampling model
with conjugate Dirichlet priors (y (0) ↔ t, n(0) ↔ s)
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Method of Quaeghebeur and de Cooman
Conjugate Priors for Linear Regression
The Imprecise Normal Regression Model

Extension of the Method of Quaeghebeur and de Cooman

note: argument is

I not limited to i.i.d. samples

I not limited to the way of contruction of priors

idea: use method for luck-models, and apply to regression
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Procedure of Quaeghebeur and de Cooman

I define set of priors via set of parameters

I define this set of parameters by lower and upper bounds

I lower and upper bounds of set of posterior parameters can be
obtained directly from the update formula:

y (1) =
n(0)y (0) + τ(w)

n(0) + q

Just as in the IDM, minimization and maximization problems on
the set of posteriors are reduced to minimization and maximization
problems on the set of priors when parameter y (1) (or a linear
function of it) is the quantity of interest.
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Conjugate Priors for Linear Regression

(at least) two possibilities for luck-model for linear regression:

1. construct prior to likelihood as described in Quaeghebeur and
de Cooman (2005) / Bernardo and Smith (1993)
I X is part of prior; can be shown to be normal at least for
p = 2 I approach only sketched

2. take well-known standard conjugate prior
I fits to method of Quaeghebeur and de Cooman, as it can
be shown to constitue a luck-model for arbitrary number p
of regressors (Theorem 2)
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2. Standard Conjugate Prior

called normal regression model in the paper

β ∼ Np

(
β(0), σ2Σ(0)

)
β | z ∼ Np

(
β(1), σ2Σ(1)

)
,

where the updated parameters β(1) and Σ(1) are obtained as

β(1) =
(
XTX + Λ(0)

)−1(
XTz + Λ(0)β(0)

)
Σ(1) =

(
XTX + Λ(0)

)−1
,

Λ(0) = Σ(0)−1
being the so-called precision matrix.
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The Imprecise Normal Regression Model

Theorem

Fixing a value n(0),
(
p(β), p(β | z)

)
constitutes a luck-model of

size 1 with prior parameters

y (0) =
1

n(0)

(
Λ(0)

Λ(0)β(0)

)
=:

(
y

(0)
a

y
(0)
b

)

and n(0) and sample statistic

τ(z) = τ(X, z) =

(
XTX
XTz

)
=:

(
τa(X, z)
τb(X, z)

)
.

Proof: The proof is given in Walter (2006) and Walter (2007B)
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‘Translation’ Issues

1. Express prior knowledge on β by a set of β(0)’s and Λ(0)’s.

2. “Translate” this set into set of y (0)’s such that resulting set
Y(0) consists only of admissible combinations of parameters
(positive definiteness of Λ(0), bounding of Y(0) as advocated
by Quaeghebeur and de Cooman)

3. Update each y (0) in Y(0) by (4) linearly to y (1).

4. “Retranslate” set Y(1) into an interpretable set of values of
β(1) and Λ(1).

2. highly komplex for arbitrary p
I analytical results derived for p = 2 (with further simplifications).
I properties of resulting model very plausible.
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Application
Concluding Remarks

Application to Data from the airgene Study

airgene: EU financed panel study

air pollutants
?−→ inflammation markers in

myocardial infarction survivors

but:

inflammation markers ←→ BMI (Body-Mass-Index) and age

I must be taken into account to adjust
air pollutants −→ inflammation markers.

Model:

log(fib)i = [β
0
, β0] + agei · [βage, βage] + bmii · [βbmi, βbmi] + εi
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Concluding Remarks: Overview

I Linear Regression Analysis
I linear regression & generalizations
I estimation methods

I Conjugate Priors
I Bayesian estimation
I luck-models

I Sets of Conjugate Priors
I method of Quaeghebeur and de Cooman

I direct application
I generalizing the standard approach

I the imprecise normal regression model

I Application and Concluding Remarks
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Concluding Remarks:
Method of QdC and Prior Data Conflict

Quaeghebeur and de Cooman vary y (0) in a set and fix n(0)

(IDM: vary t1, . . . , tk , fix s)
I insufficient behavior in case of prior-data conflict, as

y (1) − y (1) =
n(0)

(
y (0) − y (0)

)
n(0) + n

when y (0) varies between y (0) and y (0)

I imprecision decreases by same amount for any sample of size n

possible solution: vary n(0) in addition: to be explored in generality,
but already done by Walley (1991, Ch. 5.4) for two-parameter IDM.
I updating of y (0) non-linear!
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