Imprecise Probability: General Ideas and Statistical Approaches

Gero Walter

Eindhoven University of Technology, Eindhoven, NL

<g.m.walter@tue.nl>

TU e Technische Universiteit

Thanks to Matthias Troffaes for introductory slides.

Hannover 2016-12-07

1/37

Operational

- How can uncertainty be reliably
	- \blacktriangleright measured?
	- \cdot communicated?

Operational

How can uncertainty be reliably

- \blacktriangleright measured?
- \cdot communicated?

Inference

How can we use our uncertainty model for

- \triangleright statistical reasoning?
- \blacktriangleright decision making?

An event is a statement that may, or may not, hold —typically, something that may happen in the future.

Notation: *A*, *B*, *C*, . . .

Examples

- \triangleright tomorrow, it will rain
- \cdot in the next year, at most 3 components will fail

An event is a statement that may, or may not, hold —typically, something that may happen in the future.

Notation: *A*, *B*, *C*, . . .

Examples

- \cdot tomorrow, it will rain
- \cdot in the next year, at most 3 components will fail

how to express our uncertainty regarding events?

The probability of an event is a number between 0 and 1.

```
Notation: P(A), P(B), P(C), . . .
```
Examples

- \triangleright for $A =$ 'tomorrow, it will rain' my probability *P*(*A*) is 0.2
- \triangleright for $B =$ 'in the next year, at most 3 components will fail' my probability *P*(*B*) is 0.0173

The probability of an event is a number between 0 and 1.

```
Notation: P(A), P(B), P(C), . . .
```
Examples

- \triangleright for $A =$ 'tomorrow, it will rain' my probability *P*(*A*) is 0.2
- \triangleright for $B =$ 'in the next year, at most 3 components will fail' my probability *P*(*B*) is 0.0173

what do these numbers actually mean? how would you measure them?

Interpretation: Trivial Cases

- $P(A) = 0 \iff A$ is practically impossible logically?
- $P(A) = 1 \iff A$ is practically certain

Interpretation: Trivial Cases

 $P(A) = 0 \iff A$ is practically impossible logically? $P(A) = 1 \iff A$ is practically certain

4/37

what about values between 0 and 1, such as $P(A) = 0.2$?

Interpretation: Trivial Cases

 $P(A) = 0 \iff A$ is practically impossible logically? $P(A) = 1 \iff A$ is practically certain

what about values between 0 and 1, such as $P(A) = 0.2$?

Interpretation: General Case

- \triangleright it's (like) a frequency
- \cdot it's a degree of belief (\triangleright betting rate)
- \cdot it's something else

 \cdot in 1 out of 5 times, it rains tomorrow

 \cdot in 1 out of 5 times, it rains tomorrow **??? (tomorrow is not repeatable!)**

- \cdot in 1 out of 5 times, it rains tomorrow **??? (tomorrow is not repeatable!)**
- \triangleright on a 'day like this', in 1 out of 5 times, it rains the next day

- \cdot in 1 out of 5 times, it rains tomorrow **??? (tomorrow is not repeatable!)**
- \triangleright on a 'day like this', in 1 out of 5 times, it rains the next day

Frequency Interpretation

- **+** intuitive, easy to understand
- **–** needs reference class, only for repeatable events
- **–** needs plenty of data, or strong symmetry assumptions
- **!** aleatory

Probability: Betting Interpretation

- $P(A) = 0.2$ means:
	- I would *now* pay at most $\in 0.2$ if *tomorrow* I am paid \in 1 in case it rains

- I would *now* pay at most $\in 0.2$ if *tomorrow* I am paid \in 1 in case it rains
- I would *tomorrow* pay \in 1 in case it rains if I am *now* paid at least $\in 0.2$

Probability: Betting Interpretation

 $P(A) = 0.2$ means:

- I would *now* pay at most $\in 0.2$ if *tomorrow* I am paid \in 1 in case it rains
- I would *tomorrow* pay \in 1 in case it rains if I am *now* paid at least \in 0.2

- I would *now* pay at most $\in 0.2$ if *tomorrow* I am paid \in 1 in case it rains
- I would *tomorrow* pay \in 1 in case it rains if I am *now* paid at least \in 0.2

Betting Interpretation (degree of belief)

- **+** no reference class, works also for one-shot events
- **–** needs plenty of elicitation or plenty of data
- **!** epistemic

in case of partial elicitation and/or sparse data it may be hard to specify an exact probability **but you may still confidently bound your probability**

this becomes more and more relevant as problems become larger and larger

Bounding Methods

Confidence intervals (Frequentist Statistics)

- $-$ choice of confidence level α ?
- **–** p-value fallacy (Gigerenzer, Krauss, and Vitouch [2004\)](#page-124-0) a.k.a. prosecutor's fallacy
- **+** no prior needed, only likelihood

Bounding Methods

Confidence intervals (Frequentist Statistics)

- $-$ choice of confidence level α ?
- **–** p-value fallacy (Gigerenzer, Krauss, and Vitouch [2004\)](#page-124-0) a.k.a. prosecutor's fallacy
- **+** no prior needed, only likelihood

Credible intervals (Bayesian Statistics)

- $-$ choice of credible level α ?
- **–** choice of prior?
- **–** dealing with prior ignorance and prior-data conflict?
- **+** no p-value fallacy

Bounding Methods

Confidence intervals (Frequentist Statistics)

- $-$ choice of confidence level α ?
- **–** p-value fallacy (Gigerenzer, Krauss, and Vitouch [2004\)](#page-124-0) a.k.a. prosecutor's fallacy
- **+** no prior needed, only likelihood

Credible intervals (Bayesian Statistics)

- $-$ choice of credible level α ?
- **–** choice of prior?
- **–** dealing with prior ignorance and prior-data conflict?
- **+** no p-value fallacy

Interval probability (bounding probabilities directly)

- **–** choice of prior bounds?
- **+** no confidence / credible level issues
- **+** no prior ignorance issues
- **+** no p-value fallacy

The lower and upper probability of an event are numbers between 0 and 1.

Notation: $P(A), \overline{P}(A), \ldots$

Examples

 \triangleright for $A =$ 'tomorrow, it will rain' my lower probability *P*(*A*) is 0.1 my upper probability $\overline{P}(A)$ is 0.4

The lower and upper probability of an event are numbers between 0 and 1.

Notation: $P(A), \overline{P}(A), \ldots$

Examples

 \triangleright for $A =$ 'tomorrow, it will rain' my lower probability *P*(*A*) is 0.1 my upper probability $\overline{P}(A)$ is 0.4

what do these numbers actually mean? how would you measure them?

P **and** *P***: Betting Interpretation**

 $P(A) = 0.1$ and $\overline{P}(A) = 0.4$ means:

I would *now* pay at most $\in 0.1$ if *tomorrow* I am paid \in 1 in case it rains

 $P(A) = 0.1$ and $\overline{P}(A) = 0.4$ means:

- I would *now* pay at most $\in 0.1$ if *tomorrow* I am paid \in 1 in case it rains
- I would *tomorrow* pay \in 1 in case it rains if I am *now* paid at least $\in 0.4$

 $P(A) = 0.1$ and $\overline{P}(A) = 0.4$ means:

- I would *now* pay at most $\in 0.1$ if *tomorrow* I am paid \in 1 in case it rains
- I would *tomorrow* pay \in 1 in case it rains if I am *now* paid at least $\in 0.4$

p	$P(A)$	$\overline{P}(A)$	q
buy A for price p undecisive sell A for price q			

 $P(A) = 0.1$ and $\overline{P}(A) = 0.4$ means:

- I would *now* pay at most $\in 0.1$ if *tomorrow* I am paid \in 1 in case it rains
- I would *tomorrow* pay \in 1 in case it rains if I am *now* paid at least \in 0.4

p	$\underline{P}(A)$	$\overline{P}(A)$	q
buy A for price p	undecisive	sell A for price q	

Betting Interpretation

- **+** no reference class, works also for one-shot events
- **+** works with partial elicitation and / or sparse data
- **!** epistemic

The possibility space Ω is the set of all possible outcomes of the problem at hand.

Example

interested in reliability of a system with 5 components e.g. number of components that fail in the next year $\Omega = \{0, 1, 2, 3, 4, 5\}$

The possibility space Ω is the set of all possible outcomes of the problem at hand.

Example

interested in reliability of a system with 5 components e.g. number of components that fail in the next year $\Omega = \{0, 1, 2, 3, 4, 5\}$

Definition

An event is a subset of Ω . Notation: *A*, *B*, *C*, ...

Example

in the next year, at most 3 components will fail would be represented by the event $A = \{0, 1, 2, 3\}$

A lower probability *P* maps *every* event $A \subseteq \Omega$ to a real number $P(A)$.

The upper probability \overline{P} is simply defined as $\overline{P}(A) = 1 - \underline{P}(A^c)$, for all $A \subseteq \Omega$

A lower probability *P* maps *every* event $A \subseteq \Omega$ to a real number $P(A)$.

The upper probability \overline{P} is simply defined as $\overline{P}(A) = 1 - \underline{P}(A^c)$, for all $A \subseteq \Omega$

 \blacktriangleright A^c = complement (or negation) of A = all elements *not* in A

A lower probability *P* maps *every* event $A \subseteq \Omega$ to a real number $P(A)$.

The upper probability \overline{P} is simply defined as $\overline{P}(A) = 1 - \underline{P}(A^c)$, for all $A \subseteq \Omega$

- \blacktriangleright A^c = complement (or negation) of A = all elements *not* in A
- **► the identity** $\overline{P}(A) = 1 \underline{P}(A^c)$ is implied by the betting interpretation

A lower probability *P* maps *every* event $A \subseteq \Omega$ to a real number $P(A)$.

The upper probability \overline{P} is simply defined as $\overline{P}(A) = 1 - \underline{P}(A^c)$, for all $A \subseteq \Omega$

- \blacktriangleright A^c = complement (or negation) of A = all elements *not* in A
- **► the identity** $\overline{P}(A) = 1 \underline{P}(A^c)$ is implied by the betting interpretation
- **P** every event \leftrightarrow sparse data? we can always set $\underline{P}(A) = 0$ and $\underline{P}(A^c) = 0$ ($\iff \overline{P}(A) = 1$)!

A lower probability *P* maps *every* event $A \subseteq \Omega$ to a real number $P(A)$.

The upper probability \overline{P} is simply defined as $\overline{P}(A) = 1 - \underline{P}(A^c)$, for all $A \subseteq \Omega$

- \blacktriangleright A^c = complement (or negation) of A = all elements *not* in A
- **► the identity** $\overline{P}(A) = 1 \underline{P}(A^c)$ is implied by the betting interpretation
- **P** every event \leftrightarrow sparse data? we can always set $\underline{P}(A) = 0$ and $\underline{P}(A^c) = 0$ ($\iff \overline{P}(A) = 1$)!
- \triangleright *P* specification for related events may allow to raise $P(A)$ (correcting for consistency)

A probability measure *P*

maps *every* event $A \subseteq \Omega$ to a number $P(A)$ in [0, 1] and satisfies

$$
\text{P}(\emptyset) = 0, \quad P(\Omega) = 1, \text{ and} \quad P(A) = \sum_{\omega \in A} P(\{\omega\}).
$$

Definition

A probability measure *P*

maps *every* event $A \subseteq \Omega$ to a number $P(A)$ in [0, 1] and satisfies

$$
\text{P}(\emptyset) = 0, \quad P(\Omega) = 1, \text{ and} \quad P(A) = \sum_{\omega \in A} P(\{\omega\}).
$$

Definition

The credal set M of *P* is the set of all probability measures *P* for which $P(A) \leq P(A) \leq \overline{P}(A)$ for all $A \subseteq \Omega$.

Definition

A probability measure *P*

maps *every* event $A \subseteq \Omega$ to a number $P(A)$ in [0, 1] and satisfies

$$
\text{P}(\emptyset) = 0, \quad P(\Omega) = 1, \text{ and} \quad P(A) = \sum_{\omega \in A} P(\{\omega\}).
$$

Definition

The credal set M of *P* is the set of all probability measures *P* for which $P(A) \leq P(A) \leq \overline{P}(A)$ for all $A \subseteq \Omega$.

Sensitivity Interpretation of *P* and *P*

One of the probability measures *P* in the credal set M is the correct one, *but we do not know which*.

Definition

A probability measure *P*

maps *every* event $A \subseteq \Omega$ to a number $P(A)$ in [0, 1] and satisfies

$$
\text{P}(\emptyset) = 0, \quad P(\Omega) = 1, \text{ and} \quad P(A) = \sum_{\omega \in A} P(\{\omega\}).
$$

Definition

/

The credal set M of *P* is the set of all probability measures *P* for which $P(A) \leq P(A) \leq \overline{P}(A)$ for all $A \subseteq \Omega$.

Sensitivity Interpretation of *P* and *P*

One of the probability measures *P* in the credal set M is the correct one, *but we do not know which*.

crucial: no distribution over M **assumed!**

Uncertainty about probability statements

smaller credal set $=$ more precise probability statements

Lottery A

Number of winning tickets: exactly known as 5 out of 100 $P(\text{win}) = 5/100$

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 \blacktriangleright *P*(win) = [1/100, 7/100]

Uncertainty about probability statements

smaller credal set = more precise probability statements

Lottery A

Number of winning tickets: exactly known as 5 out of 100 $P(\text{win}) = 5/100$

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 \blacktriangleright *P*(win) = [1/100, 7/100]

Separate uncertainty *within the model* **(probability statements)** from uncertainty *about the model* (how certain about statements)

Uncertainty about probability statements

smaller credal set $=$ more precise probability statements

Lottery A

Number of winning tickets: exactly known as 5 out of 100 $P(\text{win}) = 5/100$

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 \blacktriangleright *P*(win) = [1/100, 7/100]

- **Separate uncertainty** *within the model* **(probability statements)** from uncertainty *about the model* (how certain about statements)
- \triangleright Systematic sensitivity analysis, robust Bayesian approach

expert info $+$ data \rightarrow complete picture

 $f(p)$ × $f(s | p)$ ∝ $f(p | s)$ \blacktriangleright Bayes' Rule

set of priors $\mathcal{M}^{(0)} \rightarrow$ sets of posteriors $\mathcal{M}^{(n)}$ by updating element by element

set of priors $\mathcal{M}^{(0)} \rightarrow$ sets of posteriors $\mathcal{M}^{(n)}$ by updating element by element

the Generalized Bayes Rule (GBR, Walley [1991\)](#page-124-0) ensures *coherence* (a consistency property)

set of priors $\mathcal{M}^{(0)} \rightarrow$ sets of posteriors $\mathcal{M}^{(n)}$ by updating element by element

the Generalized Bayes Rule (GBR, Walley [1991\)](#page-124-0) ensures *coherence* (a consistency property)

Bounds for inferences (point estimate, ...) by min / max over $\mathcal{M}^{(n)}$

set of priors $\mathcal{M}^{(0)} \rightarrow$ sets of posteriors $\mathcal{M}^{(n)}$ by updating element by element

the Generalized Bayes Rule (GBR, Walley [1991\)](#page-124-0) ensures *coherence* (a consistency property)

Bounds for inferences (point estimate, ...) by min / max over $\mathcal{M}^{(n)}$

this offers advantages over usual Bayesian inference in case of

 \triangleright prior ignorance / weakly informative priors

set of priors $\mathcal{M}^{(0)} \rightarrow$ sets of posteriors $\mathcal{M}^{(n)}$ by updating element by element

the Generalized Bayes Rule (GBR, Walley [1991\)](#page-124-0) ensures *coherence* (a consistency property)

Bounds for inferences (point estimate, ...) by min / max over $\mathcal{M}^{(n)}$

this offers advantages over usual Bayesian inference in case of

- \triangleright prior ignorance / weakly informative priors
- \triangleright prior-data conflict

'Non-informative' Priors

How to construct a prior if we do not have a lot of information?

'Non-informative' Priors

How to construct a prior if we do not have a lot of information?

Laplace: Principle of Indifference Use the uniform distribution.

'Non-informative' Priors

How to construct a prior if we do not have a lot of information?

Laplace: Principle of Indifference

Use the uniform distribution.

Obvious issue: this depends on the parametrisation!

Laplace: Principle of Indifference

Use the uniform distribution.

Obvious issue: this depends on the parametrisation!

Example

An object of 1kg has uncertain volume *V* between 1ℓ and 2ℓ .

Laplace: Principle of Indifference

Use the uniform distribution.

Obvious issue: this depends on the parametrisation!

Example

An object of 1kg has uncertain volume *V* between 1ℓ and 2ℓ .

■ Uniform distribution over volume $V \implies E(V) = 1.5\ell$.

Laplace: Principle of Indifference

Use the uniform distribution.

Obvious issue: this depends on the parametrisation!

Example

An object of 1kg has uncertain volume *V* between 1ℓ and 2ℓ .

- Uniform distribution over volume $V \implies E(V) = 1.5\ell$.
- \triangleright Uniform distribution over density $ρ = 1/V$ \Longrightarrow $E(V) = E(1/\rho) = \int_{0.5}^{1} 2/\rho \, d\rho = 2(\ln 1 - \ln 0.5) = 1.39\ell$

Laplace: Principle of Indifference

Use the uniform distribution.

Obvious issue: this depends on the parametrisation!

Example

An object of 1kg has uncertain volume *V* between 1ℓ and 2ℓ .

- Uniform distribution over volume $V \implies E(V) = 1.5\ell$.
- \triangleright Uniform distribution over density $ρ = 1/V$ \Longrightarrow $E(V) = E(1/\rho) = \int_{0.5}^{1} 2/\rho \, d\rho = 2(\ln 1 - \ln 0.5) = 1.39\ell$

The uniform distribution does not really model prior ignorance!

Laplace: Principle of Indifference

Use the uniform distribution.

Obvious issue: this depends on the parametrisation!

Example

An object of 1kg has uncertain volume *V* between 1ℓ and 2ℓ .

- Uniform distribution over volume $V \implies E(V) = 1.5\ell$.
- \triangleright Uniform distribution over density *ρ* = 1/*V* \implies

$$
E(V) = E(1/\rho) = \int_{0.5}^{1} 2/\rho \, d\rho = 2(\ln 1 - \ln 0.5) = 1.39\ell
$$

The uniform distribution does not really model prior ignorance! (Jeffreys prior is transformation-invariant, but depends on the sample space and can break decision making!)

18/37

How to construct a prior if we do not have a lot of information?

How to construct a prior if we do not have a lot of information?

Boole: Probability Bounding

Use the set of all probability distributions (vacuous model).

Results no longer depend on parametrisation!

How to construct a prior if we do not have a lot of information?

Boole: Probability Bounding

Use the set of all probability distributions (vacuous model).

Results no longer depend on parametrisation!

Example

An object of 1kg has uncertain volume *V* between 1ℓ and 2ℓ .

How to construct a prior if we do not have a lot of information?

Boole: Probability Bounding

Use the set of all probability distributions (vacuous model).

Results no longer depend on parametrisation!

Example

An object of 1kg has uncertain volume *V* between 1ℓ and 2ℓ .

 \triangleright Set of all distributions over volume *V* \implies *E(V)* ∈ [1, 2].

How to construct a prior if we do not have a lot of information?

Boole: Probability Bounding

Use the set of all probability distributions (vacuous model).

Results no longer depend on parametrisation!

Example

An object of 1kg has uncertain volume *V* between 1ℓ and 2ℓ .

- \triangleright Set of all distributions over volume *V* \implies *E(V)* ∈ [1, 2].
- \triangleright Set of all distributions over density $\rho = 1/V$

 \implies $E(V) = E(1/\rho) \in [1,2]$

Theorem

The set of posterior distributions resulting from a vacuous set of prior distributions is again vacuous, regardless of the likelihood.

We can never learn anything when starting from a vacuous set of priors!

Theorem

The set of posterior distributions resulting from a vacuous set of prior distributions is again vacuous, regardless of the likelihood.

We can never learn anything when starting from a vacuous set of priors!

Solution: Near-Vacuous Sets of Priors

Only insist that the prior predictive, or other classes of inferences, are vacuous.

This can be done using sets of conjugate priors (Walley [1996;](#page-125-0) Benavoli and Zaffalon [2012;](#page-124-1) [2015\)](#page-124-2).

 \triangleright Bernoulli observations: 0/1 observations (failure/success)

- \triangleright Bernoulli observations: 0/1 observations (failure/success)
- \rightarrow given: *s* successes in *n* i.i.d. trials and strong prior information

- \triangleright Bernoulli observations: 0/1 observations (failure/success)
- \rightarrow given: *s* successes in *n* i.i.d. trials and strong prior information
- \triangleright we are, e.g., interested in probability for success in next trial

- \triangleright Bernoulli observations: 0/1 observations (failure/success)
- \rightarrow given: *s* successes in *n* i.i.d. trials and strong prior information
- \triangleright we are, e.g., interested in probability for success in next trial

Beta-Binomial Model data : $|s|p \sim$ Binomial(*n*, *p*) conjugate prior: $\mid p \mid \alpha^{(0)}, \beta^{(0)} \quad \sim \quad \mathrm{Beta}(\alpha^{(0)},\beta^{(0)})$ $\mathsf{posterior} \colon | \ p \mid \alpha^{(n)}, \beta^{(n)} \quad \sim \quad \mathsf{Beta}(\alpha^{(n)}, \beta^{(n)})$

- \triangleright Bernoulli observations: 0/1 observations (failure/success)
- \rightarrow given: *s* successes in *n* i.i.d. trials and strong prior information
- \triangleright we are, e.g., interested in probability for success in next trial

Example: Imprecise Beta Model (IBM)

- \triangleright Bernoulli observations: 0/1 observations (failure/success)
- \rightarrow given: *s* successes in *n* i.i.d. trials and strong prior information
- \triangleright we are, e.g., interested in probability for success in next trial

Beta-Binomial Model data : $|s|p$ ∼ Binomial(*n, p*) $\textsf{conjugate prior:} \ \mid p \mid \alpha^{(0)}, \beta^{(0)} \quad \sim \quad \textsf{Beta}(\alpha^{(0)}, \beta^{(0)}) \quad \textsf{Beta}(n)$ $(0, y^{(0)})$ $\mathsf{posterior} \colon | \; p \mid \alpha^{(n)}, \beta^{(n)} \quad \thicksim \quad \mathsf{Beta}(\alpha^{(n)}, \beta^{(n)})$ \int Beta $(n^{(n)}, y^{(n)})$

Vary hyperparameters $(n^{(0)}, y^{(0)})$ in a set $\qquad \blacktriangleright$ set of priors $\mathcal{M}^{(0)}$

Example: Imprecise Beta Model (IBM)

- \triangleright Bernoulli observations: 0/1 observations (failure/success)
- \rightarrow given: *s* successes in *n* i.i.d. trials and strong prior information
- \triangleright we are, e.g., interested in probability for success in next trial

Beta-Binomial Model

Vary hyperparameters $(n^{(0)}, y^{(0)})$ in a set $\qquad \blacktriangleright$ set of priors $\mathcal{M}^{(0)}$ Set of posteriors $\mathcal{M}^{(n)}$ via $= \{(n^{(n)}, y^{(n)}): (n^{(0)}, y^{(0)}) \in \Box\}$.

Bounds for inferences (point estimate, \ldots) by min/max over

21/37

 \blacktriangleright reparametrisation helps to understand the parameter update:

$$
n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \qquad \text{which are updated as}
$$

$$
n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}
$$

 \blacktriangleright reparametrisation helps to understand the parameter update:

$$
n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \qquad \text{which are updated as}
$$

$$
n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}
$$

$$
y^{(0)} = E[p]
$$

 \blacktriangleright reparametrisation helps to understand the parameter update:

$$
n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \qquad \text{which are updated as}
$$

$$
n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}
$$

$$
y^{(0)} = E[p] \quad y^{(n)} = E[p \mid s]
$$

 \blacktriangleright reparametrisation helps to understand the parameter update:

$$
n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \qquad \text{which are updated as}
$$
\n
$$
n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}
$$
\n
$$
y^{(0)} = E[p] \quad y^{(n)} = E[p \mid s] \quad \text{ML estimator } \hat{p}
$$

21/37

 \blacktriangleright reparametrisation helps to understand the parameter update:

 \blacktriangleright reparametrisation helps to understand the parameter update:

 \blacktriangleright reparametrisation helps to understand the parameter update:

21/37

$$
n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \qquad \text{which are updated as}
$$
\n
$$
n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}
$$
\n
$$
n^{(0)} = \text{pseudocounts} \quad [y^{(0)} = E[p] \quad [y^{(n)} = E[p \mid s] \quad \text{(ML estimator } \hat{p})
$$
\n
$$
E[p \mid s] = y^{(n)} \text{ is a weighted average of } E[p] \text{ and } \hat{p}!
$$
\n
$$
\text{Var}[p \mid s] = \frac{y^{(n)}(1 - y^{(n)})}{n^{(n)} + 1} \text{ decreases with } n!
$$

single prior (uniform) prior $n^{(0)} = 2$, $y^{(0)} = 0.5$ data $s/n = 12/16 = 0.75$

single prior (uniform) prior $n^{(0)} = 2$, $y^{(0)} = 0.5$ data $s/n = 12/16 = 0.75$ v $n^{(n)} = 18$, $y^{(n)} = 0.72$

single prior (uniform) prior $n^{(0)} = 2$, $y^{(0)} = 0.5$ data $s/n = 12/16 = 0.75$ v $n^{(n)} = 18, y^{(n)} = 0.72$

near-vacuous set of priors prior $n^{(0)} = 2$, $y^{(0)} \in (0, 1)$ data $s/n = 12/16 = 0.75$

single prior (uniform) prior $n^{(0)} = 2$, $y^{(0)} = 0.5$ data $s/n = 12/16 = 0.75$ v $n^{(n)} = 18, y^{(n)} = 0.72$ near-vacuous set of priors prior $n^{(0)} = 2$, $y^{(0)} \in (0, 1)$ data $s/n = 12/16 = 0.75$ $\overline{\textbf{v}}$ $n^{(n)} = 18, y^{(n)} \in (0.67, 0.77)$

What if expert information and data tell different stories?

What if expert information and data tell different stories?

Prior-Data Conflict

- **informative prior beliefs and trusted data** (sampling model correct, no outliers, etc.) are in conflict
- \cdot "[...] the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising" (Evans and Moshonov [2006\)](#page-124-0)
- \rightarrow there are not enough data to overrule the prior

no conflict: prior $n^{(0)} = 8$, $y^{(0)} = 0.75$ data $s/n = 12/16 = 0.75$

no conflict: prior $n^{(0)} = 8$, $y^{(0)} \in [0.7, 0.8]$ data $s/n = 12/16 = 0.75$

Example: Scaled Normal Data

Canonical Exponential Families

Conjugate priors like the Beta can be constructed for sample distributions (likelihood) from:

Definition (Canonical exponential family)

$$
f(x | \psi) = h(x) \exp \left\{ \psi^T \tau(x) - b(\psi) \right\}
$$

- \triangleright includes multinomial, normal, Poisson, exponential, ...
- $\blacktriangleright \psi$ generally a transformation of original parameter θ

Canonical Exponential Families

Conjugate priors like the Beta can be constructed for sample distributions (likelihood) from:

Definition (Canonical exponential family)

$$
f(x | \psi) = h(x) \exp \left\{ \psi^T \tau(x) - b(\psi) \right\}
$$

- \triangleright includes multinomial, normal, Poisson, exponential, ...
- $\blacktriangleright \psi$ generally a transformation of original parameter θ

Definition (Family of conjugate priors)

A family of priors for i.i.d. sampling from the can. exp. family:

$$
f(\psi \mid n^{(0)}, y^{(0)}) \propto \exp\left\{n^{(0)}\left[\psi^T y^{(0)} - b(\psi)\right]\right\}
$$

with hyper-parameters $n^{(0)}$ and $y^{(0)}$.

Theorem (Conjugacy)

Posterior is of the same form as the prior:

$$
f(\psi \mid n^{(0)}, y^{(0)}, \mathbf{x}) \propto \exp\left\{n^{(n)}\left[\psi^T y^{(n)} - b(\psi)\right]\right\}
$$

where

$$
\begin{aligned}\n\boldsymbol{x} &= (x_1, \dots, x_n) & \tau(\boldsymbol{x}) &= \sum_{i=1}^n \tau(x_i) \\
n^{(n)} &= n^{(0)} + n & \qquad y^{(n)} &= \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{\tau(\boldsymbol{x})}{n}\n\end{aligned}
$$

- \blacktriangleright $y^{(0)}$ = prior expectation of $\tau(x)/n$
- \blacktriangleright $n^{(0)}$ determines spread and learning speed

 $\rightarrow n \rightarrow \infty$

▶
$$
n \to \infty
$$
 \longrightarrow $y^{(n)}$ stretch in $\longrightarrow 0$

$$
\rightarrow n \rightarrow \infty \quad \rightarrow y^{(n)} \text{ stretch in} \qquad \rightarrow 0 \quad \rightarrow \text{precise inferences}
$$

- \rightarrow *n* \rightarrow ∞ \rightarrow *y*^(*n*) stretch in
- larger range of $y^{(0)}$ in
- $\rightarrow 0$ \rightarrow precise inferences
- $^{(0)}$ in **IF** larger range of $y^{(n)}$ in
	- \blacktriangleright more vague inferences

-
- I larger range of $y^{(0)}$ in

 \blacktriangleright $n \to \infty$ \blacktriangleright $y^{(n)}$ stretch in $\implies 0$ \blacktriangleright precise inferences

 $^{(0)}$ in **IF** larger range of $y^{(n)}$ in

 \blacktriangleright more vague inferences

Model very easy to handle:

If Hyperparameter set defines set of priors $\mathcal{M}^{(0)}$

- \rightarrow *n* $\rightarrow \infty$ \rightarrow *y*^(*n*) stretch in
- I larger range of $y^{(0)}$ in

 $\rightarrow 0$ **D** precise inferences

 $^{(0)}$ in **IF** larger range of $y^{(n)}$ in

 \blacktriangleright more vague inferences

Model very easy to handle:

-
-

If Hyperparameter set defines set of priors $\mathcal{M}^{(0)}$

If Hyperparameter set defines set of posteriors $M^{(n)}$

- \rightarrow *n* $\rightarrow \infty$ \rightarrow *y*^(*n*) stretch in
- I larger range of $y^{(0)}$ in

 $\rightarrow 0$ **D** precise inferences

 $^{(0)}$ in **IF** larger range of $y^{(n)}$ in

 \blacktriangleright more vague inferences

Model very easy to handle:

- If Hyperparameter set defines set of priors $\mathcal{M}^{(0)}$
-

If Hyperparameter set defines set of posteriors $M^{(n)}$

$$
\rightarrow
$$
 is easy: $n^{(n)} = n^{(0)} + n$, $y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{\tau(x)}{n}$

-
- I larger range of $y^{(0)}$ in

 \blacktriangleright $n \to \infty$ \blacktriangleright $y^{(n)}$ stretch in $\implies 0$ \blacktriangleright precise inferences

 $^{(0)}$ in **IF** larger range of $y^{(n)}$ in

 \blacktriangleright more vague inferences

Model very easy to handle:

- If Hyperparameter set defines set of priors $\mathcal{M}^{(0)}$
- I Hyperparameter set defines set of posteriors $\mathcal{M}^{(n)}$

 \rightarrow is easy: $n^{(n)} = n^{(0)} + n$, $y^{(n)} = \frac{n^{(0)}}{n^{(0)}+n}$ $\frac{n^{(0)}}{n^{(0)}+n} y^{(0)} + \frac{n}{n^{(0)}}$ $\frac{n}{n^{(0)}+n} \cdot \frac{\tau(x)}{n}$ *n*

► Often, optimising over $(n^{(n)}, y^{(n)}) \in \mathbb{I}$ is also easy: closed form solution for $y^{(n)}$ = posterior 'guess' for $\frac{\tau(x)}{n}$ (think: \bar{x}) when has 'nice' shape

Hyperparameter Set Shapes

Hyperparameter Set Shapes

Hyperparameter Set Shapes

 \triangleright Set shape is crucial modeling choice: trade-off between model complexity and model behaviour

- \triangleright Set shape is crucial modeling choice: trade-off between model complexity and model behaviour
- $\mathbf{P} = n^{(0)} \times [y^{(0)}, \overline{y}^{(0)}]$ (Walley [1996;](#page-125-0) Quaeghebeur and de Cooman [2005\)](#page-124-0): $I = n^{(n)} \times [y^{(n)}, \overline{y}^{(n)}]$ \blacktriangleright optimise over $[y^{(n)}, \overline{y}^{(n)}]$ only, but no prior-data conflict sensitivity

- \triangleright Set shape is crucial modeling choice: trade-off between model complexity and model behaviour
- $\mathbf{P} = n^{(0)} \times [y^{(0)}, \overline{y}^{(0)}]$ (Walley [1996;](#page-125-0) Quaeghebeur and de Cooman [2005\)](#page-124-0): $I = n^{(n)} \times [y^{(n)}, \overline{y}^{(n)}]$ \blacktriangleright optimise over $[y^{(n)}, \overline{y}^{(n)}]$ only, but no prior-data conflict sensitivity

 $\bm{I} = [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [y^{(0)}, \overline{y}^{(0)}]$ (Walley [1991;](#page-124-1) Walter and Augustin [2009\)](#page-125-1):

have non-trivial forms (banana / spotlight), but prior-data conflict sensitivity and closed form for \min / $\max y^{(n)}$ over implemented as R package luck (Walter and Krautenbacher [2013\)](#page-125-2)

- \triangleright Set shape is crucial modeling choice: trade-off between model complexity and model behaviour
- $\mathbf{P} = n^{(0)} \times [y^{(0)}, \overline{y}^{(0)}]$ (Walley [1996;](#page-125-0) Quaeghebeur and de Cooman [2005\)](#page-124-0): $I = n^{(n)} \times [y^{(n)}, \overline{y}^{(n)}]$ \blacktriangleright optimise over $[y^{(n)}, \overline{y}^{(n)}]$ only, but no prior-data conflict sensitivity
- $\bm{I} = [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [y^{(0)}, \overline{y}^{(0)}]$ (Walley [1991;](#page-124-1) Walter and Augustin [2009\)](#page-125-1):

have non-trivial forms (banana / spotlight), but prior-data conflict sensitivity and closed form for \min / $\max y^{(n)}$ over implemented as R package luck (Walter and Krautenbacher [2013\)](#page-125-2)

 \triangleright Other set shapes possible, but may be more difficult to handle

set shape for strong prior-data agreement (Walter and Coolen [2016\)](#page-125-3)

set shape for strong prior-data agreement (Walter and Coolen [2016\)](#page-125-3)

33/37

- How to define sets of priors $\mathcal{M}^{(0)}$ is a crucial modeling choice
- Sets $\mathcal{M}^{(0)}$ via parameter sets $\Pi^{(0)}$ seem to work better than other models discussed in the robust Bayes literature:
	- Neighbourhood models
		- set of distributions 'close to' a central distribution P_0
		- example: ε -contamination class: $\{P: P = (1 \varepsilon)P_0 + \varepsilon Q, Q \in \mathbb{Q}\}\$
			- \triangleright not necessarily closed under Bayesian updating

- How to define sets of priors $\mathcal{M}^{(0)}$ is a crucial modeling choice
- Sets $\mathcal{M}^{(0)}$ via parameter sets $\Pi^{(0)}$ seem to work better than other models discussed in the robust Bayes literature:
	- Neighbourhood models
		- set of distributions 'close to' a central distribution P_0
		- example: ε -contamination class: $\{P: P = (1 \varepsilon)P_0 + \varepsilon Q, Q \in \mathbb{Q}\}\$
			- \triangleright not necessarily closed under Bayesian updating
	- Density ratio class / interval of measures
		- set of distributions by bounds for the density function $f(\vartheta)$:

$$
\mathcal{M}_{l,u}^{(0)} = \left\{f(\theta): \exists c \in \mathbb{R}_{>0}: l(\theta) \leq cf(\theta) \leq u(\theta) \right\}
$$

- posterior set is bounded by updated $l(\theta)$ and $u(\theta)$
- $u(\theta)/l(\theta)$ is constant under updating
	- \triangleright size of the set does not decrease with *n*
	- \blacktriangleright very vague posterior inferences

- \triangleright choice of prior can severely affect inferences even if your prior is 'non-informative'
- \triangleright solution: go imprecise
- \triangleright models from canonical exponential family make this easy to do (Quaeghebeur and de Cooman [2005;](#page-124-0) Benavoli and Zaffalon [2012;](#page-124-2) [2015\)](#page-124-3)
- \triangleright allows to adequately express the quality of prior information
- \triangleright close relations to robust Bayes literature (Berger et al. [1994;](#page-124-4) Ríos Insua and Ruggeri [2000\)](#page-124-5)
- \triangleright concerns uncertainty in the prior (uncertainty in data generating process: imprecise sampling models)
- \cdot if your prior is informative then prior-data conflict can be an issue (Walter and Augustin [2009;](#page-125-1) Walter [2013\)](#page-125-4)

References I

- Benavoli, A. and M. Zaffalon (2012). "A model of prior ignorance for inferences in the one-parameter exponential family". In: *Journal of Statistical Planning and Inference* 142, pp. 1960–1979. DOI: [10.1016/j.jspi.2012.01.023](http://dx.doi.org/10.1016/j.jspi.2012.01.023).
- Benavoli, A. and M. Zaffalon (2015). "Prior near ignorance for inferences in the k-parameter exponential family". In: *Statistics* 49.5, pp. 1104–1140. DOI:

[10.1080/02331888.2014.960869](http://dx.doi.org/10.1080/02331888.2014.960869).

Berger et al. (1994). "An overview of robust Bayesian analysis". In: *TEST* 3, pp. 5–124. Evans, M. and H. Moshonov (2006). "Checking for Prior-Data Conflict". In: *Bayesian Analysis* 1,

pp. 893–914. URL: <http://projecteuclid.org/euclid.ba/1340370946>.

- Gigerenzer, G., S. Krauss, and O. Vitouch (2004). "The Null Ritual What you always wanted to know about significance testing but were afraid to ask". In: *The Sage handbook of quantitative Methodology for the social sciences*. Ed. by D. Kaplan. Thousand Oaks, CA: Sage, pp. 391–408.
- Quaeghebeur, E. and G. de Cooman (2005). "Imprecise probability models for inference in exponential families". In: *ISIPTA '05. Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications*. Ed. by F. Cozman, R. Nau, and T. Seidenfeld. Manno: SIPTA, pp. 287–296. URL:

<http://leo.ugr.es/sipta/isipta05/proceedings/papers/s019.pdf>.

Ríos Insua, D. and F. Ruggeri (2000). *Robust Bayesian Analysis*. New York: Springer. Walley, P. (1991). *Statistical Reasoning with Imprecise Probabilities*. London: Chapman and Hall.

- Walley, P. (1996). "Inferences from multinomial data: Learning about a bag of marbles". In: *Journal of the Royal Statistical Society, Series B* 58.1, pp. 3–34. URL: <http://www.jstor.org/stable/2346164>.
- Walter, G. (2013). "Generalized Bayesian Inference under Prior-Data Conflict". PhD thesis. Department of Statistics, LMU Munich. URL:

<http://edoc.ub.uni-muenchen.de/17059/>.

- Walter, G. and T. Augustin (2009). "Imprecision and Prior-data Conflict in Generalized Bayesian Inference". In: *Journal of Statistical Theory and Practice* 3, pp. 255–271. DOI: [10.1080/15598608.2009.10411924](http://dx.doi.org/10.1080/15598608.2009.10411924).
- Walter, G. and F. P. A. Coolen (2016). "Sets of Priors Reflecting Prior-Data Conflict and Agreement". In: *Information Processing and Management of Uncertainty in Knowledge-Based Systems: 16th International Conference, IPMU 2016, Eindhoven, The Netherlands, June 20-24, 2016, Proceedings, Part I*. Ed. by Paulo Joao Carvalho et al. Cham: Springer International Publishing, pp. 153–164. ISBN: 978-3-319-40596-4. DOI: [10.1007/978-3-319-40596-4_14](http://dx.doi.org/10.1007/978-3-319-40596-4_14).
- Walter, G. and N. Krautenbacher (2013). luck*: R package for Generalized iLUCK-models*. URL: <http://luck.r-forge.r-project.org/>.

