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Requirements for an Uncertainty Model

Operational
How can uncertainty be reliably

I measured?
I communicated?

Inference
How can we use our uncertainty model for

I statistical reasoning?
I decision making?
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Uncertainty via Probability

Definition
An event is a statement that may, or may not, hold
—typically, something that may happen in the future.

Notation: A, B, C, . . .

Examples
I tomorrow, it will rain
I in the next year, at most 3 components will fail

how to express our uncertainty regarding events?
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Probability: Definition

Definition
The probability of an event is a number between 0 and 1.

Notation: P(A), P(B), P(C), . . .

Examples
I for A = ‘tomorrow, it will rain’

my probability P(A) is 0.2
I for B = ‘in the next year, at most 3 components will fail’

my probability P(B) is 0.0173

what do these numbers actually mean?
how would you measure them?
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Probability: Interpretation

Interpretation: Trivial Cases
P(A) = 0 ⇐⇒ A is practically impossible logically?

P(A) = 1 ⇐⇒ A is practically certain

what about values between 0 and 1, such as P(A) = 0.2?

Interpretation: General Case
I it’s (like) a frequency
I it’s a degree of belief (I betting rate)
I it’s something else
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Probability: Frequency Interpretation

P(A) = 0.2 means:
I in 1 out of 5 times, it rains tomorrow

??? (tomorrow is not repeatable!)
I on a ‘day like this’, in 1 out of 5 times, it rains the next day

Frequency Interpretation
+ intuitive, easy to understand
– needs reference class, only for repeatable events
– needs plenty of data, or strong symmetry assumptions
! aleatory
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Probability: Betting Interpretation

P(A) = 0.2 means:
I I would now pay at most e0.2

if tomorrow I am paid e1 in case it rains

I I would tomorrow pay e1 in case it rains
if I am now paid at least e0.2

P(A)p

buy A for price p

q

sell A for price q

Betting Interpretation (degree of belief)
+ no reference class, works also for one-shot events
– needs plenty of elicitation or plenty of data
! epistemic
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Dealing With Severe Uncertainty

in case of partial elicitation and/or sparse data
it may be hard to specify an exact probability
but you may still confidently bound your probability

this becomes more and more relevant
as problems become larger and larger
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Bounding Methods
Confidence intervals (Frequentist Statistics)

– choice of confidence level α?
– p-value fallacy (Gigerenzer, Krauss, and Vitouch 2004)

a.k.a. prosecutor’s fallacy
+ no prior needed, only likelihood

Credible intervals (Bayesian Statistics)
– choice of credible level α?
– choice of prior?
– dealing with prior ignorance and prior-data conflict?
+ no p-value fallacy

Interval probability (bounding probabilities directly)
– choice of prior bounds?
+ no confidence / credible level issues
+ no prior ignorance issues
+ no p-value fallacy
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Lower and Upper Probability: Definition

Definition
The lower and upper probability of an event
are numbers between 0 and 1.

Notation: P(A), P(A), . . .

Examples
I for A = ‘tomorrow, it will rain’

my lower probability P(A) is 0.1
my upper probability P(A) is 0.4

what do these numbers actually mean?
how would you measure them?
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P and P: Betting Interpretation

P(A) = 0.1 and P(A) = 0.4 means:
I I would now pay at most e0.1

if tomorrow I am paid e1 in case it rains

I I would tomorrow pay e1 in case it rains
if I am now paid at least e0.4

P(A) P(A)

undecisive

p

buy A for price p

q

sell A for price q

Betting Interpretation
+ no reference class, works also for one-shot events
+ works with partial elicitation and / or sparse data
! epistemic
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Events: Formal Definition

Definition
The possibility space Ω is
the set of all possible outcomes of the problem at hand.

Example
interested in reliability of a system with 5 components
e.g. number of components that fail in the next year
Ω = {0, 1, 2, 3, 4, 5}

Definition
An event is a subset of Ω. Notation: A, B, C, . . .

Example
in the next year, at most 3 components will fail
would be represented by the event A = {0, 1, 2, 3}
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P and P: Formal Definition

Definition
A lower probability P
maps every event A ⊆ Ω to a real number P(A).

The upper probability P is simply defined as
P(A) = 1 − P(Ac), for all A ⊆ Ω

I Ac = complement (or negation) of A = all elements not in A
I the identity P(A) = 1 − P(Ac) is implied by the betting

interpretation
I every event↔ sparse data?

we can always set P(A) = 0 and P(Ac) = 0 (⇐⇒ P(A) = 1)!
I P specification for related events may allow to raise P(A)

(correcting for consistency)
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P and P: Credal Sets

Definition
A probability measure P
maps every event A ⊆ Ω to a number P(A) in [0, 1] and satisfies

I P(∅) = 0, I P(Ω) = 1, and I P(A) =
∑
ω∈A P({ω}).

Definition
The credal setM of P
is the set of all probability measures P for which
P(A) ≤ P(A) ≤ P(A) for all A ⊆ Ω.

Sensitivity Interpretation of P and P
One of the probability measures P in the credal setM
is the correct one, but we do not know which.

crucial: no distribution overM assumed!
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Sensitivity Interpretation for Credal Sets

Uncertainty about probability statements
smaller credal set = more precise probability statements

Lottery A
Number of winning tickets:

exactly known as 5 out of 100
I P(win) = 5/100

Lottery B
Number of winning tickets:

not exactly known, supposedly
between 1 and 7 out of 100
I P(win) = [1/100, 7/100]

I Separate uncertainty within the model (probability statements)
from uncertainty about the model (how certain about statements)

I Systematic sensitivity analysis, robust Bayesian approach
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Bayesian Inference

expert info + data → complete picture

prior distribution + sample distribution → posterior distribution

f (p) × f (s | p) ∝ f (p | s)
I Bayes’ Rule

Beta prior Binomial Beta posterior
distribution I conjugacy

p ∼ Beta(α(0), β(0)) s | p ∼ Binomial(n, p) p | s ∼ Beta(α(n), β(n))
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Bayesian Inference with Credal Sets

Bayesian inference with sets of priors

set of priorsM(0)
→ sets of posteriorsM(n)

by updating element by element

the Generalized Bayes Rule (GBR, Walley 1991)
ensures coherence (a consistency property)

Bounds for inferences (point estimate, . . . ) by min / max overM(n)

this offers advantages over usual Bayesian inference in case of
I prior ignorance / weakly informative priors
I prior-data conflict
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‘Non-informative’ Priors

How to construct a prior if we do not have a lot of information?

Laplace: Principle of Indifference
Use the uniform distribution.

Obvious issue: this depends on the parametrisation!

Example
An object of 1kg has uncertain volume V between 1` and 2`.

I Uniform distribution over volume V =⇒ E(V) = 1.5`.
I Uniform distribution over density ρ = 1/V =⇒

E(V) = E(1/ρ) =
∫ 1

0.5 2/ρ dρ = 2(ln 1 − ln 0.5) = 1.39`

The uniform distribution does not really model prior ignorance!
(Jeffreys prior is transformation-invariant,
but depends on the sample space and can break decision making!)
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Prior Ignorance via Sets of Probabilities

How to construct a prior if we do not have a lot of information?

Boole: Probability Bounding
Use the set of all probability distributions (vacuous model).

Results no longer depend on parametrisation!

Example
An object of 1kg has uncertain volume V between 1` and 2`.

I Set of all distributions over volume V =⇒ E(V) ∈ [1, 2].
I Set of all distributions over density ρ = 1/V

=⇒ E(V) = E(1/ρ) ∈ [1, 2]
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Prior Ignorance via Sets of Probabilities

Theorem
The set of posterior distributions resulting from a vacuous set of prior
distributions is again vacuous, regardless of the likelihood.

We can never learn anything when starting from a vacuous set of
priors!

Solution: Near-Vacuous Sets of Priors
Only insist that the prior predictive, or other classes of inferences,
are vacuous.

This can be done using sets of conjugate priors
(Walley 1996; Benavoli and Zaffalon 2012; 2015).
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Example: Imprecise Beta Model (IBM)

I Bernoulli observations: 0/1 observations (failure/success)

I given: s successes in n i.i.d. trials and strong prior information
I we are, e.g., interested in probability for success in next trial

Beta-Binomial Model
data : s | p ∼ Binomial(n, p)

conjugate prior: p | α(0), β(0)
∼ Beta(α(0), β(0))

posterior: p | α(n), β(n)
∼ Beta(α(n), β(n))

Beta-Binomial Model
data : s | p ∼ Binomial(n, p)

conjugate prior: p | α(0), β(0)
∼ Beta(α(0), β(0)) Beta(n(0), y(0))

posterior: p | α(n), β(n)
∼ Beta(α(n), β(n)) Beta(n(n), y(n))

Vary hyperparameters (n(0), y(0)) in a set IΠ(0) I set of priorsM(0)

Set of posteriorsM(n) via IΠ(n) =
{
(n(n), y(n)) : (n(0), y(0)) ∈ IΠ(0)

}
Bounds for inferences (point estimate, . . . ) by min/max over IΠ(0).
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Reparametrisation of the Beta Distribution

I reparametrisation helps to understand the parameter update:

n(0) = α(0) + β(0) , y(0) =
α(0)

α(0) + β(0)
, which are updated as

n(n) = n(0) + n , y(n) =
n(0)

n(0) + n
y(0) +

n
n(0) + n

·
s
n

y(0) = E[p] y(n) = E[p | s] ML estimator p̂n(0) = pseudocounts

E[p | s] = y(n) is a weighted average of E[p] and p̂!

Var[p | s] =
y(n)(1 − y(n))

n(n) + 1
decreases with n!
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Beta-Binomial Model (BBM)
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Prior-Data Conflict

What if expert information and data tell different stories?

Prior-Data Conflict
I informative prior beliefs and trusted data

(sampling model correct, no outliers, etc.) are in conflict
I “[. . . ] the prior [places] its mass primarily on distributions in the

sampling model for which the observed data is surprising”
(Evans and Moshonov 2006)

I there are not enough data to overrule the prior
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Beta-Binomial Model (BBM)
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Imprecise BBM

IDM (Walley 1996); Quaeghebeur and de Cooman (2005)
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Imprecise BBM with n(0) interval

Walley (1991, §5.4.3); Walter and Augustin (2009); Walter (2013)
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Example: Scaled Normal Data

Example: Scaled Normal Data
Data : x | µ ∼ N(µ, 1)

conjugate prior: µ | n(0), y(0)
∼ N(y(0), 1/n(0))

posterior: µ | n(n), y(n)
∼ N(y(n), 1/n(n)) (τ(x)/n = x̄)
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Canonical Exponential Families

Conjugate priors like the Beta can be constructed for sample
distributions (likelihood) from:

Definition (Canonical exponential family)

f (x | ψ) = h(x) exp
{
ψTτ(x) − b(ψ))

}
I includes multinomial, normal, Poisson, exponential, . . .
I ψ generally a transformation of original parameter θ

Definition (Family of conjugate priors)
A family of priors for i.i.d. sampling from the can. exp. family:

f (ψ | n(0), y(0)) ∝ exp
{
n(0)
[
ψT y(0)

− b(ψ)
]}

with hyper-parameters n(0) and y(0).
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Canonical Exponential Families

Theorem (Conjugacy)
Posterior is of the same form as the prior:

f (ψ | n(0), y(0),x) ∝ exp
{
n(n)
[
ψT y(n)

− b(ψ)
]}

where

x = (x1, . . . , xn) τ(x) =

n∑
i=1

τ(xi)

n(n) = n(0) + n y(n) =
n(0)

n(0) + n
· y(0) +

n
n(0) + n

·
τ(x)

n

I y(0) = prior expectation of τ(x)/n
I n(0) determines spread and learning speed
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General Model Properties

Good inference properties
I n→∞

I y(n) stretch in IΠ(n)
→ 0 I precise inferences

I larger range of y(0) in IΠ(0) I larger range of y(n) in IΠ(n)

I more vague inferences
Model very easy to handle:

I Hyperparameter set IΠ(0) defines set of priorsM(0)

I Hyperparameter set IΠ(n) defines set of posteriorsM(n)

I IΠ(0)
→ IΠ(n) is easy: n(n) = n(0) + n, y(n) = n(0)

n(0)+n y(0) + n
n(0)+n ·

τ(x)
n

I Often, optimising over (n(n), y(n)) ∈ IΠ(n) is also easy:
closed form solution for y(n) = posterior ‘guess’ for τ(x)

n (think: x̄)
when IΠ(0) has ‘nice’ shape
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Model very easy to handle:

I Hyperparameter set IΠ(0) defines set of priorsM(0)

I Hyperparameter set IΠ(n) defines set of posteriorsM(n)

I IΠ(0)
→ IΠ(n) is easy: n(n) = n(0) + n, y(n) = n(0)
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Hyperparameter Set Shapes
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Hyperparameter Set Shapes

I Set shape is crucial modeling choice:
trade-off between model complexity and model behaviour

I IΠ(0) = n(0)
× [y(0), y(0)] (Walley 1996; Quaeghebeur and de Cooman 2005):

IΠ(n) = n(n)
× [y(n), y(n)] I optimise over [y(n), y(n)] only,

but no prior-data conflict sensitivity
I IΠ(0) = [n(0),n(0)] × [y(0), y(0)] (Walley 1991; Walter and Augustin 2009):

IΠ(n) have non-trivial forms (banana / spotlight), but prior-data
conflict sensitivity and closed form for min /max y(n) over IΠ(n)

implemented as R package luck (Walter and Krautenbacher 2013)

I Other set shapes possible, but may be more difficult to handle
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Hyperparameter Set Shapes

set shape for strong prior-data agreement (Walter and Coolen 2016)
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Robust Bayesian Analysis: Other Models

I How to define sets of priorsM(0) is a crucial modeling choice
I SetsM(0) via parameter sets Π(0) seem to work better than other

models discussed in the robust Bayes literature:
• Neighbourhood models

• set of distributions ‘close to’ a central distribution P0
• example: ε-contamination class: {P : P = (1 − ε)P0 + εQ,Q ∈ Q}

I not necessarily closed under Bayesian updating

• Density ratio class / interval of measures
• set of distributions by bounds for the density function f (ϑ):

M
(0)
l,u =

{
f (θ) : ∃c ∈ R>0 : l(θ) ≤ c f (θ) ≤ u(θ)

}
• posterior set is bounded by updated l(θ) and u(θ)
• u(θ)/l(θ) is constant under updating

I size of the set does not decrease with n
I very vague posterior inferences
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Summary

I choice of prior can severely affect inferences
even if your prior is ‘non-informative’

I solution: go imprecise
I models from canonical exponential family make this easy to do

(Quaeghebeur and de Cooman 2005; Benavoli and Zaffalon 2012; 2015)

I allows to adequately express the quality of prior information
I close relations to robust Bayes literature

(Berger et al. 1994; Ríos Insua and Ruggeri 2000)

I concerns uncertainty in the prior
(uncertainty in data generating process: imprecise sampling models)

I if your prior is informative then prior-data conflict can be an issue
(Walter and Augustin 2009; Walter 2013)



36/37

/

References I

Benavoli, A. and M. Zaffalon (2012). “A model of prior ignorance for inferences in the
one-parameter exponential family”. In: Journal of Statistical Planning and Inference 142,
pp. 1960–1979. DOI: 10.1016/j.jspi.2012.01.023.

Benavoli, A. and M. Zaffalon (2015). “Prior near ignorance for inferences in the k-parameter
exponential family”. In: Statistics 49.5, pp. 1104–1140. DOI:
10.1080/02331888.2014.960869.

Berger et al. (1994). “An overview of robust Bayesian analysis”. In: TEST 3, pp. 5–124.
Evans, M. and H. Moshonov (2006). “Checking for Prior-Data Conflict”. In: Bayesian Analysis 1,

pp. 893–914. URL: http://projecteuclid.org/euclid.ba/1340370946.
Gigerenzer, G., S. Krauss, and O. Vitouch (2004). “The Null Ritual – What you always wanted

to know about significance testing but were afraid to ask”. In: The Sage handbook of
quantitative Methodology for the social sciences. Ed. by D. Kaplan. Thousand Oaks, CA:
Sage, pp. 391–408.

Quaeghebeur, E. and G. de Cooman (2005). “Imprecise probability models for inference in
exponential families”. In: ISIPTA ’05. Proceedings of the Fourth International Symposium
on Imprecise Probabilities and Their Applications. Ed. by F. Cozman, R. Nau, and
T. Seidenfeld. Manno: SIPTA, pp. 287–296. URL:
http://leo.ugr.es/sipta/isipta05/proceedings/papers/s019.pdf.

Ríos Insua, D. and F. Ruggeri (2000). Robust Bayesian Analysis. New York: Springer.
Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. London: Chapman and

Hall.

http://dx.doi.org/10.1016/j.jspi.2012.01.023
http://dx.doi.org/10.1080/02331888.2014.960869
http://projecteuclid.org/euclid.ba/1340370946
http://leo.ugr.es/sipta/isipta05/proceedings/papers/s019.pdf


37/37

/

References II

Walley, P. (1996). “Inferences from multinomial data: Learning about a bag of marbles”. In:
Journal of the Royal Statistical Society, Series B 58.1, pp. 3–34. URL:
http://www.jstor.org/stable/2346164.

Walter, G. (2013). “Generalized Bayesian Inference under Prior-Data Conflict”. PhD thesis.
Department of Statistics, LMU Munich. URL:
http://edoc.ub.uni-muenchen.de/17059/.

Walter, G. and T. Augustin (2009). “Imprecision and Prior-data Conflict in Generalized Bayesian
Inference”. In: Journal of Statistical Theory and Practice 3, pp. 255–271. DOI:
10.1080/15598608.2009.10411924.

Walter, G. and F. P. A. Coolen (2016). “Sets of Priors Reflecting Prior-Data Conflict and
Agreement”. In: Information Processing and Management of Uncertainty in
Knowledge-Based Systems: 16th International Conference, IPMU 2016, Eindhoven, The
Netherlands, June 20-24, 2016, Proceedings, Part I. Ed. by Paulo Joao Carvalho et al.
Cham: Springer International Publishing, pp. 153–164. ISBN: 978-3-319-40596-4. DOI:
10.1007/978-3-319-40596-4_14.

Walter, G. and N. Krautenbacher (2013). luck: R package for Generalized iLUCK-models.
URL: http://luck.r-forge.r-project.org/.

http://www.jstor.org/stable/2346164
http://edoc.ub.uni-muenchen.de/17059/
http://dx.doi.org/10.1080/15598608.2009.10411924
http://dx.doi.org/10.1007/978-3-319-40596-4_14
http://luck.r-forge.r-project.org/

