

Sets of canonical parameters in imprecise Bayesian inference with conjugate priors

Gero Walter

Department of Statistics Ludwig-Maximilians-Universität München (LMU)

November 1st, 2011

 Bernoulli observations: 0/1 observations (success yes/no, head/tails when tossing a coin)

- Bernoulli observations: 0/1 observations (success yes/no, head/tails when tossing a coin)
- given: a set of observations (12 out of 16 tosses were heads)

- Bernoulli observations: 0/1 observations (success yes/no, head/tails when tossing a coin)
- given: a set of observations (12 out of 16 tosses were heads)
- additional to observations, we have strong prior information (we are convinced that P(heads) should be around 0.75)

- Bernoulli observations: 0/1 observations (success yes/no, head/tails when tossing a coin)
- given: a set of observations (12 out of 16 tosses were heads)
- additional to observations, we have strong prior information (we are convinced that P(heads) should be around 0.75)
- interested in certain inferences,
 e.g. probability P that the next observation is a head.

- Bernoulli observations: 0/1 observations (success yes/no, head/tails when tossing a coin)
- given: a set of observations (12 out of 16 tosses were heads)
- additional to observations, we have strong prior information (we are convinced that P(heads) should be around 0.75)
- interested in certain inferences,
 e.g. probability P that the next observation is a head.
- prior-data conflict: if P(heads) for the coin is actually very different from our prior guess (i.e., prior information and data are in conflict), this should show up in the inferences (probability P and, e.g., confidence intervals)

- one standard statistical model for this situation: Beta-Bernoulli/Binomial Model
- here in parameterization used, e.g., by Walley:

- one standard statistical model for this situation: Beta-Bernoulli/Binomial Model
- here in parameterization used, e.g., by Walley:

Data :	S	\sim	Binom(p, n)
conjugate prior:	р	\sim	$Beta(n^{(0)}, y^{(0)})$
posterior:	p s	\sim	$Beta(n^{(n)}, y^{(n)})$

$$y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \quad n^{(n)} = n^{(0)} + n$$

- one standard statistical model for this situation: Beta-Bernoulli/Binomial Model
- here in parameterization used, e.g., by Walley:

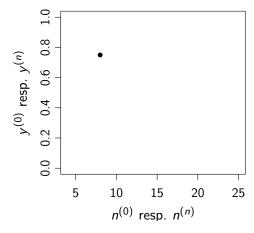
Data :s \sim $\mathsf{Binom}(p, n)$ conjugate prior:p \sim $\mathsf{Beta}(n^{(0)}, y^{(0)})$ posterior: $p \mid s$ \sim $\mathsf{Beta}(n^{(n)}, y^{(n)})$

$$\mathsf{P} = y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \quad n^{(n)} = n^{(0)} + n$$

- one standard statistical model for this situation: Beta-Bernoulli/Binomial Model
- here in parameterization used, e.g., by Walley:

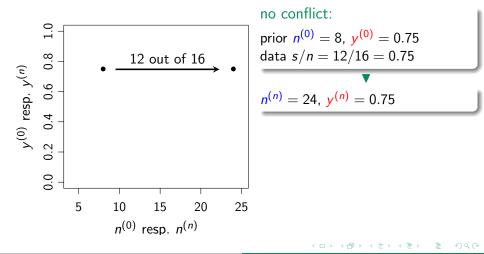
Data : $s \sim$ \sim Binom(p, n)conjugate prior: $p \sim$ \sim $Beta(n^{(0)}, y^{(0)})$ posterior: $p \mid s \sim$ $Beta(n^{(n)}, y^{(n)})$

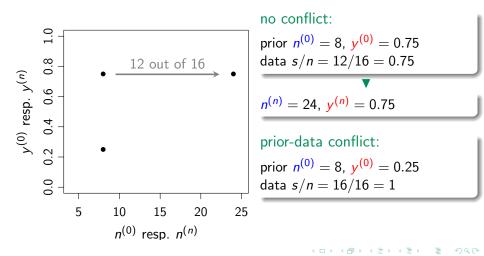
$$P = y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \quad n^{(n)} = n^{(0)} + n$$
$$Var(p \mid s) = \frac{y^{(n)}(1 - y^{(n)})}{n^{(n)} + 1} \implies \text{ no reaction to prior-data conflict!}$$

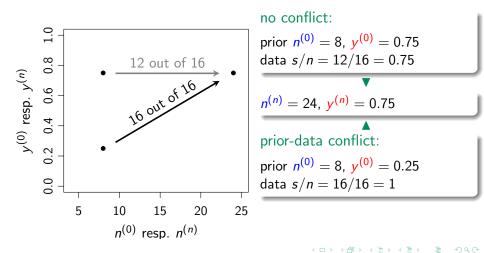


no conflict:

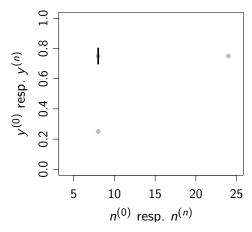
prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.75$
data $s/n = 12/16 = 0.75$







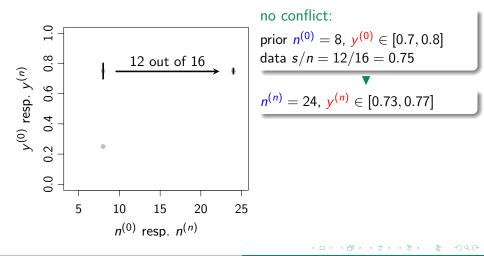
Imprecise BBM (IBBM) \doteq IDM with prior information



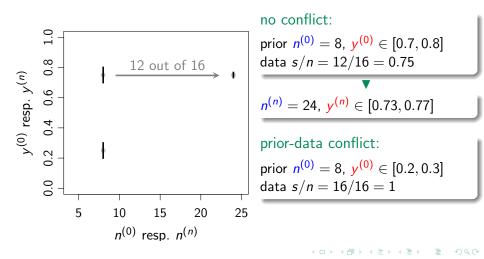
no conflict:

prior
$$n^{(0)}=8,\ y^{(0)}\in[0.7,0.8]$$
data $s/n=12/16=0.75$

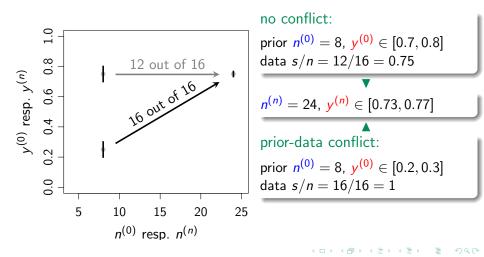
Imprecise BBM (IBBM) \doteq IDM with prior information



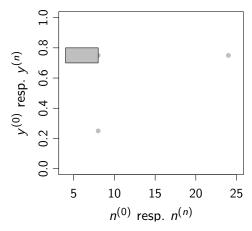
Imprecise BBM (IBBM) \doteq IDM with prior information



Imprecise BBM (IBBM) \doteq IDM with prior information



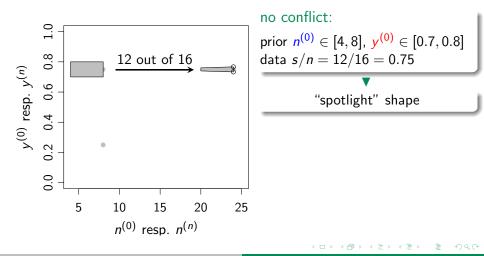
pdc-Imprecise BBM (pdc-IBBM): Walley 1991, Ch.5.4.3



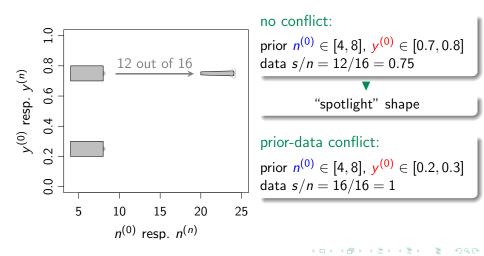
no conflict:

prior $n^{(0)} \in [4,8]$, $y^{(0)} \in [0.7,0.8]$ data s/n = 12/16 = 0.75

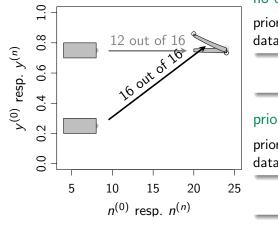
pdc-Imprecise BBM (pdc-IBBM): Walley 1991, Ch.5.4.3



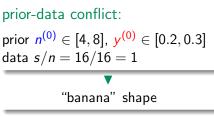
pdc-Imprecise BBM (pdc-IBBM): Walley 1991, Ch.5.4.3



pdc-Imprecise BBM (pdc-IBBM): Walley 1991, Ch.5.4.3



no conflict: prior $n^{(0)} \in [4, 8], y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75 "spotlight" shape



 reaction to prior-data conflict due to different 'updating speeds' depending on n⁽⁰⁾

- reaction to prior-data conflict due to different 'updating speeds' depending on n⁽⁰⁾
- can be generalized to conjugate family distributions (Walter & Augustin 2009) (same weighted average structure for y⁽ⁿ⁾)

- reaction to prior-data conflict due to different 'updating speeds' depending on n⁽⁰⁾
- can be generalized to conjugate family distributions (Walter & Augustin 2009) (same weighted average structure for y⁽ⁿ⁾)
- posterior parameter sets not rectangular (but can be described by their four 'corners')

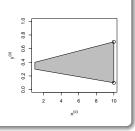
- reaction to prior-data conflict due to different 'updating speeds' depending on n⁽⁰⁾
- can be generalized to conjugate family distributions (Walter & Augustin 2009) (same weighted average structure for y⁽ⁿ⁾)
- posterior parameter sets not rectangular (but can be described by their four 'corners')
- pdc-IBBM goes "bananas" irrespective of n or n⁽⁰⁾
 i.e. also for small sample sizes and weak prior information

- reaction to prior-data conflict due to different 'updating speeds' depending on n⁽⁰⁾
- can be generalized to conjugate family distributions (Walter & Augustin 2009) (same weighted average structure for y⁽ⁿ⁾)
- posterior parameter sets not rectangular (but can be described by their four 'corners')
- pdc-IBBM goes "bananas" irrespective of n or n⁽⁰⁾
 i.e. also for small sample sizes and weak prior information
- open ends:
 - why rectangles? why same $y^{(0)}$ interval at $\underline{n}^{(0)}$ and $\overline{n}^{(0)}$?
 - 'conjugate' set description possible? (invariant under updating)
 - what could be an easy elicitation procedure for parameter sets?

Allow different $y^{(0)}$ intervals at $\underline{n}^{(0)}$ and $\overline{n}^{(0)}$:

"snout left" (shorter $y^{(0)}$ interval at $\underline{n}^{(0)}$) Encoding the same amount of prior information for different prior strengths $n^{(0)}$:

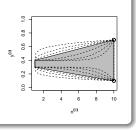
- for low $n^{(0)}$, can be precise with $y^{(0)}$
- for high $n^{(0)}$, must be cautious with $y^{(0)}$



Allow different $y^{(0)}$ intervals at $\underline{n}^{(0)}$ and $\overline{n}^{(0)}$:

"snout left" (shorter $y^{(0)}$ interval at $\underline{n}^{(0)}$) Encoding the same amount of prior information for different prior strengths $n^{(0)}$:

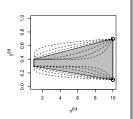
- for low $n^{(0)}$, can be precise with $y^{(0)}$
- for high $n^{(0)}$, must be cautious with $y^{(0)}$



Allow different $y^{(0)}$ intervals at $\underline{n}^{(0)}$ and $\overline{n}^{(0)}$:

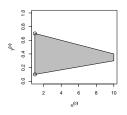
"snout left" (shorter $y^{(0)}$ interval at $\underline{n}^{(0)}$) Encoding the same amount of prior information for different prior strengths $n^{(0)}$:

- for low $n^{(0)}$, can be precise with $y^{(0)}$
- for high $n^{(0)}$, must be cautious with $y^{(0)}$



"snout right" (shorter $y^{(0)}$ interval at $\overline{n}^{(0)}$) Imprecision like confidence interval length for different pseudocounts $n^{(0)}$:

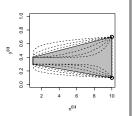
- for few $n^{(0)}$, imprecise interval for $y^{(0)}$
- for many $n^{(0)}$, precise interval for $y^{(0)}$



Allow different $y^{(0)}$ intervals at $\underline{n}^{(0)}$ and $\overline{n}^{(0)}$:

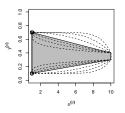
"snout left" (shorter $y^{(0)}$ interval at $\underline{n}^{(0)}$) Encoding the same amount of prior information for different prior strengths $n^{(0)}$:

- for low $n^{(0)}$, can be precise with $y^{(0)}$
- for high $n^{(0)}$, must be cautious with $y^{(0)}$

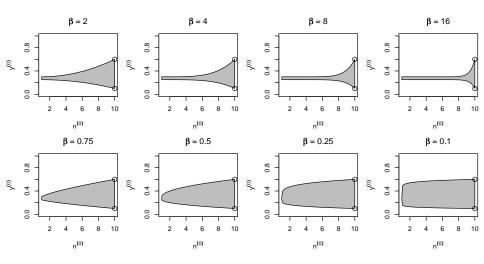


"snout right" (shorter $y^{(0)}$ interval at $\overline{n}^{(0)}$) Imprecision like confidence interval length for different pseudocounts $n^{(0)}$:

- for few $n^{(0)}$, imprecise interval for $y^{(0)}$
- for many $n^{(0)}$, precise interval for $y^{(0)}$



"snout left": Priors

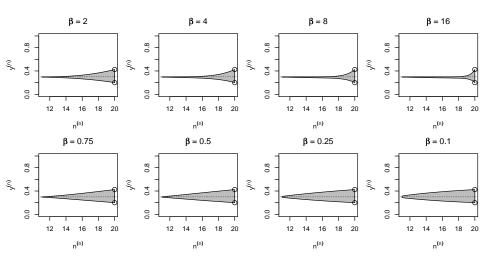


▲ 同 ▶ ▲ 臣

э

Beyond Rectangles Shape Conjugacy Elicitation

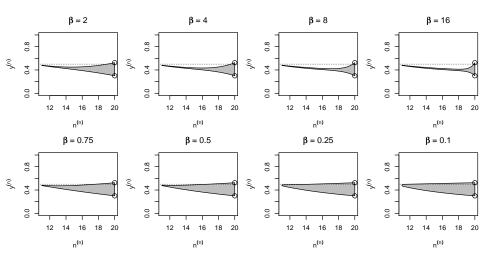
"snout left": Posteriors when s/n = 3/10



< 同 ▶

Beyond Rectangles Shape Conjugacy Elicitation

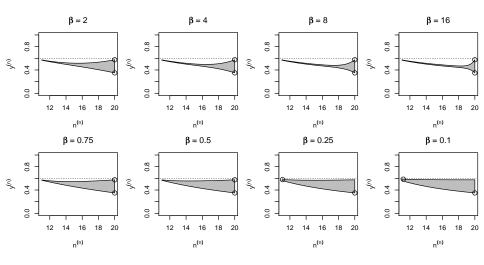
"snout left": Posteriors when s/n = 5/10



17 ▶

Beyond Rectangles Shape Conjugacy Elicitation

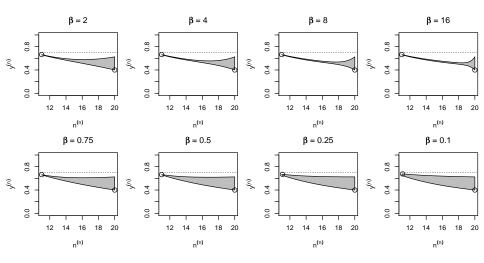
"snout left": Posteriors when s/n = 6/10



17 ▶

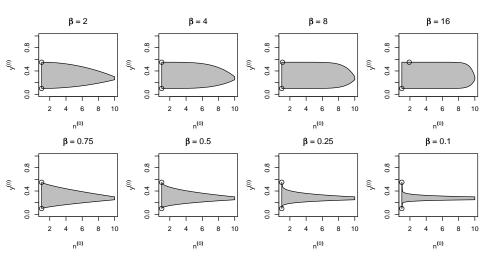
Beyond Rectangles Shape Conjugacy Elicitation

"snout left": Posteriors when s/n = 7/10



< 同 ▶

"snout right": Priors

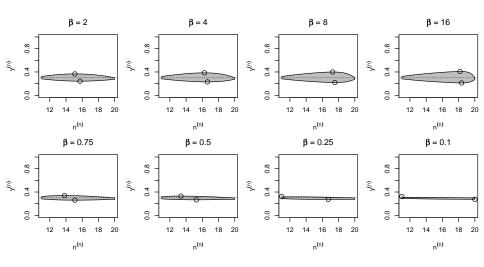


▲ 同 ▶ → 三 ▶

3

Beyond Rectangles Shape Conjugacy Elicitation

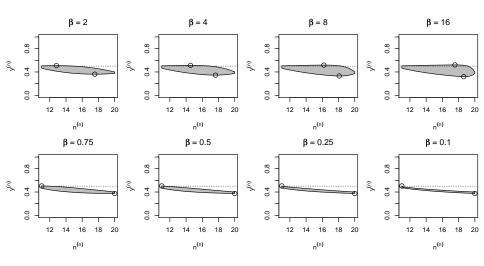
"snout right": Posteriors when s/n = 3/10



< 同 ▶

Beyond Rectangles Shape Conjugacy Elicitation

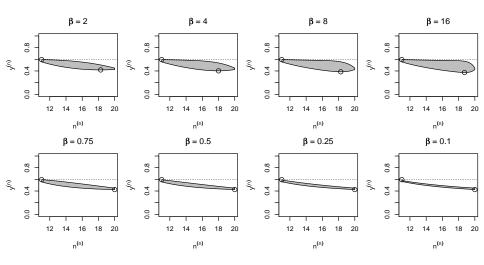
"snout right": Posteriors when s/n = 5/10



17 ▶

Beyond Rectangles Shape Conjugacy Elicitation

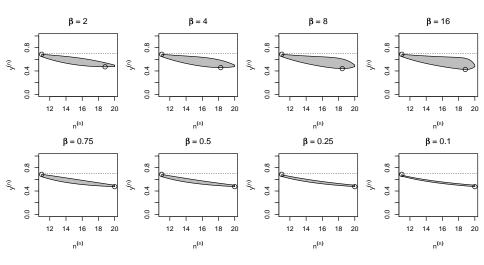
"snout right": Posteriors when s/n = 6/10



A ►

Beyond Rectangles Shape Conjugacy Elicitation

"snout right": Posteriors when s/n = 7/10



Shape Conjugacy?

Such general prior shapes are difficult to elicit, do not carry over to posterior, and not all aspects of the shape might be relevant for inference(s) of interest.

Shape Conjugacy?

- Such general prior shapes are difficult to elicit, do not carry over to posterior, and not all aspects of the shape might be relevant for inference(s) of interest.
- A shape that is invariant under updating may not exist.

Shape Conjugacy?

- Such general prior shapes are difficult to elicit, do not carry over to posterior, and not all aspects of the shape might be relevant for inference(s) of interest.
- A shape that is invariant under updating may not exist.
- Sets of points or vertical lines are invariant shape *descriptions*, but may be impractical.

Shape Conjugacy?

- Such general prior shapes are difficult to elicit, do not carry over to posterior, and not all aspects of the shape might be relevant for inference(s) of interest.
- A shape that is invariant under updating may not exist.
- Sets of points or vertical lines are invariant shape *descriptions*, but may be impractical.
- Better focus on the aspects that matter for the inference(s) of interest: search for conjugate shape description specific to inferences, i.e. a shape description that is invariant only to those aspects that matter
 - Example: rectangle is generally a coarse approximation, but does not change inference on P

Elicitation

To me still quite unclear what all those shapes mean: what kind of prior information requests what kind of shape?

프 () () 프

Elicitation

- To me still quite unclear what all those shapes mean: what kind of prior information requests what kind of shape?
- Approach via elicitation: is it possible to elicit a 'conjugate' prior set from three questions on
 - $[\underline{P}, \overline{P}]$ (prior prob. for 'Head')
 - $[\underline{P}_1, \overline{P}_1]$ (posterior prob. for 'Head' given one 'Head' observed)
 - $[\underline{P}_0, \overline{P}_0]$ (posterior prob. for 'Head' given one 'Tail' observed)

Elicitation

- To me still quite unclear what all those shapes mean: what kind of prior information requests what kind of shape?
- Approach via elicitation: is it possible to elicit a 'conjugate' prior set from three questions on
 - $[\underline{P}, \overline{P}]$ (prior prob. for 'Head')
 - $[\underline{P}_1, \overline{\underline{P}}_1]$ (posterior prob. for 'Head' given one 'Head' observed)
 - $[\underline{P}_0, \overline{P}_0]$ (posterior prob. for 'Head' given one 'Tail' observed)
- Current study of four-point-sets (ignoring all between $\underline{n}^{(0)}$ and $\overline{n}^{(0)}$) to understand which answers could lead to "snout left" and which to "snout right".