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Setting: a prototype system ,

We want to learn about the system reliability
Rsys(t) = P(Tsys > t) based on

» system run until time tnow:
” 1 ¢ observations, each being either

a failure time ¢; or a censoring time t;f = tnow

» cautious assumptions on component reliability:

3 expert information,
e.g. from the component manufacturers
which we don’t trust entirely

How to combine these two information sources?

ol =
L1 1

Technis
TU Eindho
Universif

ty of Technology



Bayesian inference

expert info + — complete picture




Bayesian inference

expert info + data — complete picture
prior distribution + likelihood — posterior distribution

p(A) X pe(t|A) o p(Alt) » Bayes’ Rule




Bayesian inference

2/12

expert info + data — complete picture
prior distribution + likelihood — posterior distribution
p(A) X pe(t|A) o p(Alt) » Bayes’ Rule
l \ 3
inverse Gamma Weibull with inverse Gamma
prior fixed shape « posterior » conjugacy
A~ IG(a@, pO) t| A~ Wei(A) At ~1G(a™, g™y



Bayesian inference

2/12

expert info + data — complete picture
prior distribution + likelihood — posterior distribution
p(A) X pe(t|A) o p(Alt) » Bayes’ Rule
l \ 3
inverse Gamma Weibull with inverse Gamma
prior fixed shape « posterior » conjugacy
A~ IG(a@, pO) t| A~ Wei(A) At ~1G(a™, g™y

» makes learning about component reliability tractable,
just update parameters: a©® — o™, O — g

» conjugacy holds also for censored observations
» closed form for system reliability function Reys(t | £)

Technische Universiteit
e Eindhoven
University of Technology



Prior-data conflict

What if expert information and data tell different stories?
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What if expert information and data tell different stories?

» reparametrization helps to understand effect of prior-data conflict:

n®=a®_1, O =p0/®_1),  where

n® =n© 4y ) O + n e

n(O)y n(0)+n n ]11'

y© =E[A]
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What if expert information and data tell different stories?

» reparametrization helps to understand effect of prior-data conflict:

n®=a®_1, O =p0/®_1),  where

0
<">—n(°>+n Y = n® 4O n_ 1 s

+ PR
g oL

n0 = pseudocounts y© =E[A] |y™ =E[A|¢] |ML estimator A

E[A | t] is a weighted average of E[A] and A!
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Prior-data conflict example

y@ =E[A | t] = 53 (6.4 weeks), sd = 61
n@ =4

y© = E[A] = 103 (9 weeks), sd = 146
n® =2
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Prior-data conflict example

y@ = E[A | t] = 52 (6.4 weeks), sd = 61
n® =4
» almost the same as before!
y© = E[A] = 62 (7 weeks), sd = 72
n® =2
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Imprecise / interval probability

» Averaging property holds for all conjugate models (!)
Can we mitigate this and still keep tractability?
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and allow to better model partial or vague information on A.
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» Averaging property holds for all conjugate models (!)
Can we mitigate this and still keep tractability?

» Reliability function R(t) is a collection of probability statements:
R(t) = probability that the system survives past t.
How can we express uncertainty
about these probability statements?

» Add imprecision as new modelling dimension:
Sets of priors model uncertainty in probability statements
and allow to better model partial or vague information on A.

» Separate uncertainty whithin the model (reliability statements)
from uncertainty about the model (which parameters).

» Can also be seen as systematic sensitivity analysis
or robust Bayesian approach.
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Uncertainty about probability statements
smaller sets = more precise probability statements

Lottery A Lottery B
Number of winning tickets: Number of winning tickets:
exactly known as 5 out of 100 not exactly known, supposedly
== P(win) = 5/100 between 1 and 7 out of 100

= P(win) = [1/100, 7/100]
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Uncertainty about probability statements
smaller sets = more precise probability statements

Lottery A Lottery B
Number of winning tickets: Number of winning tickets:
exactly known as 5 out of 100 not exactly known, supposedly
== P(win) = 5/100 between 1 and 7 out of 100

== P(win) = [1/100, 7/100]

Let parameters (n?, @) vary in a set TT?) == set of priors

Sets of priors — sets of posteriors by updating element by element:
GBR (Walley 1991) ensures coherence (a consistency property)

Walter and Augustin (2009), Walter (2013):

10 = [n(O)Iﬁ(O)] % [y(O),y(O)]

gives tractability & meaningful reaction to prior-data conflict:

» larger set of posteriors ‘

.~ more imprecise / cautious probability statements TU /e B
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Sets of prior distributions: examples
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y@ = E[A | t] € [44,70] (5.9-7.4 weeks),
n® € [4,7], sd € [48,76]

y© = E[A] € [46, 81] (6-8 weeks),
n® e [2,5], sd € [51,115]
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Sets of prior distributions: examples
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Sets of prior distributions: examples

PN | t] € [42,92] (5.7-8.5 weeK
£ [4,7], sd € [48,99]

= E[A] € [81,127] (8—10 weeks),
n® e [2,5], sd € [91,180]
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Sets of prior distributions: examples

no conflict
prior-data conflict
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System reliability

» Closed form for the system reliability via the survival signature:

P(Tsys >t {”]((O)z ]/(0)/ tk}lzK)
ni—ep ng—ex

K
=Y ) O ) [ [ PCE =t 1,y )
;=0 Ix=0 k=1
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» Closed form for the system reliability via the survival signature:

P(Tsys >t {n(o) ]/](<0), tk}l:K)

k 7
ni—ep ng—ex K

=Y. ) 0, B [ PCE =11 n, 50, )
L=0 Ix=0 k=1

Survival signature ®(l4, ..., Ix)
(Coolen and Coolen-Maturi 2012)

= P(system functions | {x .’s function}')
ll lz l3 (0] 11 lz 13 O]
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System reliability

» Closed form for the system reliability via the survival signature:

P(Tsys >t {”]((O)z ]/(0)/ tk}lzK)
ni—ep ng—ex

K
S IR I (URRES) | R AT LAY
L=0 Ix=0 k=1

Survival signature ®(l4, ..., Ix)
(Coolen and Coolen-Maturi 2012)
= P(system functions | {Ix .’s function

=

lzK)

ll l2 l3 (o} 11 12 13 )
0 0 O0fO 0o 2 1|1
0 0 1|0 0 3 0|1
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» Closed form for the system reliability via the survival signature:

P(Tsys >t {”]((0)1 y}({O), tk}lzK)

n—e ng—ex

K
=Y. Y o, B[] PCE =11 a0,y 8
Ix=0 k=1

1,=0 ’

Survival signature ®(l4, ..., Ix) Posterior predictive probability
(Coolen and Coolen-Maturi 2012) that I, of the n; — ¢, surviving [K]'s
= P(system functions | {x ’s function}X) || function at time ¢:
ho b b12 b R SIPG > TIT > trow A0
[Pt <T|T > toow, Al
0O 0 1]0 0 3 0|1 0"
0 1 0]o0 0 3 11 Fug- Qe L, i, £ 0
0o 1 1067 1 0 010 (integral can be solved analytically)
0 2 0067
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System reliability: bounds

» Lower / upper bound through optimization for each ¢:
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System reliability: bounds

» Lower / upper bound through optimization for each ¢:

Ryye (t|{m]((0)ltk}1:1<): min P(Tsys>t|{nl((O),yl(CO)’tk}lzK)

©0) L 0) gy1:K
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System reliability: bounds

9/12

» Lower / upper bound through optimization for each ¢:

(t | {M(O) k)t K) = min P(Tsys >t|{n I(cO)’y(O) £y K)

sys
= min P(Tsys >t y?, tk}lK)

Esys (f | {]Hl(cO)’ tk}lzK) max p(Tsys >t|{n ](<O)’ ]/(0) tk} )

n©,.mo
1 ey

= max P(Tsys >t {n(O) 70 Lt K)

(0)
. K
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System reliability: examples

E[T|y"1€[9,11], n” € [2,10]
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System reliability: examples

t' = (5%,5%), t* = (4,5,5), t* =5*
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System reliability: examples
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t' = (5%,5%), t* = (4,5,5%), t> = 5*

t' = (3,3%), t* = (1,3%,3"), £ = 3
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System reliability: examples

t' = (5%,5%), t* = (4,5,5%), t> = 5*
th = (3,3%), t* =(1,3%,3%), t3 = 3*
th=(9%,9%), t* = (9,9*,9%), 3 = 9*
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» Very limited data: Bayesian model with set of conjugate priors

» Set of system reliability functions reflects uncertainties from
limited data (with censoring!) and vague expert information

» In particular, it reflects prior-data conflict
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Summary:
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» Very limited data: Bayesian model with set of conjugate priors

» Set of system reliability functions reflects uncertainties from
limited data (with censoring!) and vague expert information

» In particular, it reflects prior-data conflict
Next steps:

» Nonparametric model
(drop Weibull assumption for component lifetimes)

» Allow dependence between components
(common-cause failure, ...)

» Use model for maintenance planning
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