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Setting: a prototype system
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We want to learn about the system reliability
Rsys(t) = P(Tsys > t) based on

I system run until time tnow:
` observations, each being either
a failure time t j or a censoring time t+

j = tnow

I cautious assumptions on component reliability:
expert information,
e.g. from the component manufacturers
which we don’t trust entirely

How to combine these two information sources?
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Bayesian inference

expert info + data → complete picture

prior distribution + likelihood → posterior distribution

p(λ) × pc(t | λ) ∝ p(λ | t) I Bayes’ Rule
↓ ↓ ↓

inverse Gamma Weibull with inverse Gamma
prior fixed shape κ posterior I conjugacy

λ ∼ IG(α(0), β(0)) t | λ ∼Weiκ(λ) λ | t ∼ IG(α(n), β(n))

I makes learning about component reliability tractable,
just update parameters: α(0)

→ α(n), β(0)
→ β(n)

I conjugacy holds also for censored observations
I closed form for system reliability function Rsys(t | t)
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Prior-data conflict

What if expert information and data tell different stories?

I reparametrization helps to understand effect of prior-data conflict:

n(0) = α(0)
− 1 , y(0) = β(0)/(α(0)

− 1) , where

n(n) = n(0) + n , y(n) =
n(0)

n(0) + n
y(0) +

n
n(0) + n

·
1
n

∑n
j=1 tκj

y(0) = E[λ] y(n) = E[λ | t] ML estimator λ̂n(0) = pseudocounts

E[λ | t] is a weighted average of E[λ] and λ̂!
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Prior-data conflict example
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Imprecise / interval probability

I Averaging property holds for all conjugate models (!)
Can we mitigate this and still keep tractability?

I Reliability function R(t) is a collection of probability statements:
R(t) = probability that the system survives past t.
How can we express uncertainty
about these probability statements?

I Add imprecision as new modelling dimension:
Sets of priors model uncertainty in probability statements
and allow to better model partial or vague information on λ.

I Separate uncertainty whithin the model (reliability statements)
from uncertainty about the model (which parameters).

I Can also be seen as systematic sensitivity analysis
or robust Bayesian approach.
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Sets of prior distributions

Uncertainty about probability statements
smaller sets = more precise probability statements

Lottery A
Number of winning tickets:

exactly known as 5 out of 100
I P(win) = 5/100

Lottery B
Number of winning tickets:

not exactly known, supposedly
between 1 and 7 out of 100
I P(win) = [1/100, 7/100]

Let parameters (n(0), y(0)) vary in a set IΠ(0) I set of priors

Sets of priors→ sets of posteriors by updating element by element:
GBR (Walley 1991) ensures coherence (a consistency property)

Walter and Augustin (2009), Walter (2013):
IΠ(0) = [n(0),n(0)] × [y(0), y(0)]
gives tractability & meaningful reaction to prior-data conflict:

I larger set of posteriors
I more imprecise / cautious probability statements
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Sets of prior distributions: examples
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System reliability

I Closed form for the system reliability via the survival signature:

P
(
Tsys > t | {n(0)

k , y
(0)
k , t

k
}
1:K

)
=

n1−e1∑
l1=0

· · ·

nK−eK∑
lK=0

Φ(l1, . . . , lK)
K∏

k=1

P(Ck
t = lk | n

(0)
k , y

(0)
k , t

k)

Survival signature Φ(l1, . . . , lK)
(Coolen and Coolen-Maturi 2012)
= P(system functions | {lk k ’s function}1:K)

l1 l2 l3 Φ

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0.67
0 2 0 0.67

l1 l2 l3 Φ

0 2 1 1
0 3 0 1
0 3 1 1
1 0 0 0
...

...
...

...

1

2

2

1

2

3

Posterior predictive probability
that lk of the nk − ek surviving k ’s
function at time t:(nk−ek

lk

) ∫
[P(t > T | T > tnow, λk)]lk

[P(t ≤ T | T > tnow, λk)]nk−ek−lk

fλk |···(λk | n
(0)
k , y

(0)
k , t

k) dθ

(integral can be solved analytically)
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System reliability: bounds

I Lower / upper bound through optimization for each t:

Rsys

(
t | {IΠ(0)

k , t
k
}
1:K

)
= min

IΠ(0)
1 ,...,IΠ(0)

K

P
(
Tsys > t | {n(0)

k , y
(0)
k , t

k
}
1:K

)

= min
n(0)

1 ,...,n(0)
K

P
(
Tsys > t | {n(0)

k , y
(0)
k
, tk
}
1:K

)
Rsys

(
t | {IΠ(0)

k , t
k
}
1:K

)
= max

IΠ(0)
1 ,...,IΠ(0)

K

P
(
Tsys > t | {n(0)

k , y
(0)
k , t

k
}
1:K

)
= max

n(0)
1 ,...,n(0)

K

P
(
Tsys > t | {n(0)

k , y
(0)
k , t

k
}
1:K

)
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System reliability: examples
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Summary & Outlook

Summary:
I Very limited data: Bayesian model with set of conjugate priors
I Set of system reliability functions reflects uncertainties from

limited data (with censoring!) and vague expert information
I In particular, it reflects prior-data conflict

Next steps:
I Nonparametric model

(drop Weibull assumption for component lifetimes)
I Allow dependence between components

(common-cause failure, . . . )
I Use model for maintenance planning
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