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Setting: a one of a kind parallel system

...

1

2

`

(1 out of `)

We want to learn about the system reliability
Rsys(t) = P(Tsys > t) based on

I system run until time tnow:
` observations, each being either
a failure time t j or a censoring time t+

j = tnow

I cautious assumptions on component reliability:
expert information,
e.g. from the component manufacturer
which we don’t trust entirely

How to combine these two information sources?



1/11

/

Setting: a one of a kind parallel system

...

1

2

`

(1 out of `)

We want to learn about the system reliability
Rsys(t) = P(Tsys > t) based on
I system run until time tnow:

` observations, each being either
a failure time t j or a censoring time t+

j = tnow

I cautious assumptions on component reliability:
expert information,
e.g. from the component manufacturer
which we don’t trust entirely

How to combine these two information sources?



1/11

/

Setting: a one of a kind parallel system

...

1

2

`

(1 out of `)

We want to learn about the system reliability
Rsys(t) = P(Tsys > t) based on
I system run until time tnow:

` observations, each being either
a failure time t j or a censoring time t+

j = tnow

I cautious assumptions on component reliability:
expert information,
e.g. from the component manufacturer
which we don’t trust entirely

How to combine these two information sources?



1/11

/

Setting: a one of a kind parallel system

...

1

2

`

(1 out of `)

We want to learn about the system reliability
Rsys(t) = P(Tsys > t) based on
I system run until time tnow:

` observations, each being either
a failure time t j or a censoring time t+

j = tnow

I cautious assumptions on component reliability:
expert information,
e.g. from the component manufacturer
which we don’t trust entirely

How to combine these two information sources?



2/11

/

Bayesian inference

expert info + data → complete picture

prior distribution + likelihood → posterior distribution

p(λ) × pc(t | λ) ∝ p(λ | t) I Bayes’ Rule
↓ ↓ ↓

inverse Gamma Weibull with inverse Gamma
prior fixed shape k posterior I conjugacy

λ ∼ IG(α(0), β(0)) t | λ ∼Weik(λ) λ | t ∼ IG(α(`), β(`))

I makes learning about component reliability tractable,
just update parameters: α(0)

→ α(`), β(0)
→ β(`)

I conjugacy holds also for censored observations
I closed form for system reliability function Rsys(t | t)
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Prior-data conflict

What if expert information and data tell different stories?

I reparametrization helps to understand effect of prior-data conflict:

n(0) = α(0)
− 1 , y(0) = β(0)/(α(0)

− 1) , where

n(`) = n(0) + ` , y(`) =
n(0)

n(0) + `
y(0) +

`

n(0) + `
·

1
`

∑`
j=1 tk

j

y(0) = E[λ] y(`) = E[λ | t] ML estimator λ̂n(0) = pseudocounts

E[λ | t] is a weighted average of E[λ] and λ̂!
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Prior-data conflict example
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Imprecise / interval probability

I Averaging property holds for all conjugate models (!)
Can we mitigate this and still keep tractability?

I Reliability function R(t) is a collection of probability statements:
R(t) = probability that the system survives past t.
How can we express uncertainty
about these probability statements?

I Add imprecision as new modelling dimension:
Sets of priors model uncertainty in probability statements
and allow to better model partial or vague information on λ.

I Separate uncertainty whithin the model (reliability statements)
from uncertainty about the model (which parameters).

I Can also be seen as systematic sensitivity analysis
or robust Bayesian approach.
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Sets of prior distributions

Uncertainty about probability statements
smaller sets = more precise probability statements

Lottery A
Number of winning tickets:

exactly known as 5 out of 100
I P(win) = 5/100

Lottery B
Number of winning tickets:

not exactly known, supposedly
between 1 and 7 out of 100
I P(win) = [1/100, 7/100]

Let parameters (n(0), y(0)) vary in a set IΠ(0) I set of priors

Sets of priors→ sets of posteriors by updating element by element:
GBR (Walley 1991) ensures coherence (a consistency property)

Walter and Augustin (2009), Walter (2013):
IΠ(0) = [n(0),n(0)] × [y(0), y(0)]
gives tractability & meaningful reaction to prior-data conflict:

I larger set of posteriors
I more imprecise / cautious probability statements
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Sets of prior distributions: examples
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System reliability

I Closed form for the system reliability:

Rsys(t | t`m,n
(0), y(0))

= 1−
`−m∑
i=0

(−1)i
(
` −m

i

)  n(0)y(0) + (` −m)tk
now +

∑m
j=1 tk

j

n(0)y(0) + (` −m − i)tk
now +

∑m
j=1 tk

j + itk


n(0)+m+1

I Lower / upper bound through optimization for each t:

Rsys(t | t`m, IΠ
(0)) = min

n(0)∈[n(0),n(0)]
Rsys(t | t`m,n

(0), y(0))

Rsys(t | t`m, IΠ
(0)) = max

n(0)∈[n(0),n(0)]
Rsys(t | t`m,n

(0), y(0))
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System reliability: examples
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Summary & Outlook

I Very limited data: Bayesian model with set of conjugate priors

I Set of system reliability functions reflects uncertainties from
limited data (with censoring!) and vague expert information

I In particular, it reflects prior-data conflict
I Parallel system I general system layouts

(k-out-of-n, series/parallel combinations)
with multiple types of components
using the survival signature
(Coolen and Coolen-Maturi 2012)

1
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I Nonparametric model
(drop Weibull assumption for component lifetimes)

I Allow dependence between components
(common-cause failure, . . . )

I Use model for maintenance planning
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System reliability
We want to find the system reliability
P (Tsys > t) for a one-of-a-kind system:

1

2

1

2

3

n1 = 2

n2 = 2

n3 = 1

The system consists of nk exchangeable
components of types 1 ,. . . , K .

Component Lifetimes
The lifetime for each k is assumed as
Weibull with fixed shape β:

Fk(t | λk) = 1− e−
tβ

λk

E[T | λk] = β
√
λk Γ(1 + 1/β)

We have information on λk from the
component manufacturer, but do not
fully trust it and model knowledge on λk
cautiously with a set of priorsM(0)

k .

Set of Priors
EachM(0)

k is taken as a set of conjugate inverse Gamma
priors. In terms of canonical parameters n(0), y(0),
M(0)

k =
{

IG(n
(0)
k + 1, n

(0)
k y

(0)
k ) | [n(0)

k , n
(0)
k ]× [y(0)

k
, y

(0)
k ]
}

,
where y(0)k = E[λk | n(0)

k , y
(0)
k ] and n(0)

k = pseudocounts.
The prior parameter set Π

(0)
k = [n

(0)
k , n

(0)
k ]× [y(0)

k
, y

(0)
k ] allows

for more imprecision in case of prior-data conflict [2].

Data
We observe the system from startup until tnow. For each k,
the data tkek;nk consists of ek failure times and nk − ek
censored observations.
n
(0)
k and y(0)k are updated to n(n)

k and y(n)k via Bayes’ Rule.
Need to minimize over n(0)

k ’s only, as min must be reached for y(0)
k

’s (lower expected
lifetimes = lower component survival probabilities = lower system survival probability).

P
(
Tsys > t | {n(0)

k , y
(0)
k , tkek;nk}

1:K
)

= min
n
(0)
1 ,...,n

(0)
K

n1−e1∑

l1=0

· · ·
nK−eK∑

lK=0

Φ(l1, . . . , lK)
K∏

k=1

P (Ck
t = lk | n(0)

k , y(0)
k
, tkek;nk)

Survival signature Φ(l1, . . . , lK) [1]
= P (system functions | {lk k ’s function}1:K)

l1 l2 l3 Φ

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0.5

0 2 0 1

l1 l2 l3 Φ

0 2 1 1
1 0 0 0
1 0 1 0.5
1 1 1 0.75
...

...
...

...

Posterior predictive probability that lk of the nk − ek surviving k ’s function at time t:

(
nk − ek
lk

)∫ [
Pk(T > t | T > tnow, λk)

]lk×
[
1− Pk(T > t | T > tnow, λk)

]nk−ek−lk
fλk|...(λk | n

(0)
k , y

(0)
k , tkek;nk) dλk

=

(
nk − ek
lk

) nk−ek−lk∑

j=0

(−1)j
(
nk − ek − lk

j

)(
n
(n)
k y

(n)
k

n
(n)
k y

(n)
k + (lk + j)(tβ − (tnow)β)

)n
(n)
k +1

We assume β = 2, E[T | y(0)1 ] ∈ [9, 11], n(0)
1 ∈ [2, 10], E[T | y(0)2 ] ∈ [4, 5], n(0)

2 ∈ [8, 16], and E[T | y(0)3 ] ∈ [9, 11], n(0)
3 ∈ [1, 5].

Failure times as expected

6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

R
sy

s(t
)

1

2

1

2

3

t10;2 = (5+, 5+)

t22;2 = (4, 5)

t30;1 = (5+)

Surprisingly early failures

4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

R
sy

s(t
)

1

2

1

2

3

t11;2 = (3, 3+)

t21;2 = (1, 3+)

t30;1 = (3+)

Surprisingly late failures

10 12 14 16 18 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

R
sy

s(t
)

1

2

1

2

3

t10;2 = (10+, 10+)

t21;2 = (10, 10+)

t30;1 = (10+)

References
[1] Frank P. A. Coolen and Tahani Coolen-Maturi. Generalizing the signature to systems with multiple types of components. In W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak,

and J. Kacprzyk, editors, Complex Systems and Dependability, volume 170 of Advances in Intelligent and Soft Computing, pages 115–130. Springer, 2012.
[2] G. Walter. Generalized Bayesian Inference under Prior-Data Conflict. PhD thesis, Department of Statistics, LMU Munich, 2013. http://edoc.ub.uni-muenchen.de/17059.

/ school of industrial engineering

Operations, Planning, Accounting & Control www.opac.ieis.tue.nl

System Reliability Estimation
under Prior-Data Conflict
Gero Waltera, Frank P.A. Coolenb, Simme Douwe Flappera

a School of Industrial Engineering, Eindhoven University of Technology, Eindhoven, NL
b Department of Mathematical Sciences, Durham University, Durham, UK

System reliability
We want to find the system reliability
P (Tsys > t) for a one-of-a-kind system:
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k and y(0)k are updated to n(n)
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The lifetime for each k is assumed as
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component manufacturer, but do not
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k ] allows

for more imprecision in case of prior-data conflict [2].

Data
We observe the system from startup until tnow. For each k,
the data tkek;nk consists of ek failure times and nk − ek
censored observations.
n
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k and y(0)k are updated to n(n)

k and y(n)k via Bayes’ Rule.
Need to minimize over n(0)

k ’s only, as min must be reached for y(0)
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’s (lower expected
lifetimes = lower component survival probabilities = lower system survival probability).

P
(
Tsys > t | {n(0)

k , y
(0)
k , tkek;nk}

1:K
)

= min
n
(0)
1 ,...,n

(0)
K

n1−e1∑

l1=0

· · ·
nK−eK∑

lK=0

Φ(l1, . . . , lK)
K∏

k=1

P (Ck
t = lk | n(0)

k , y(0)
k
, tkek;nk)

Survival signature Φ(l1, . . . , lK) [1]
= P (system functions | {lk k ’s function}1:K)

l1 l2 l3 Φ

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0.5

0 2 0 1

l1 l2 l3 Φ

0 2 1 1
1 0 0 0
1 0 1 0.5
1 1 1 0.75
...

...
...

...

Posterior predictive probability that lk of the nk − ek surviving k ’s function at time t:
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The lifetime for each k is assumed as
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E[T | λk] = β
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λk Γ(1 + 1/β)

We have information on λk from the
component manufacturer, but do not
fully trust it and model knowledge on λk
cautiously with a set of priorsM(0)

k .
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Data
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We observe the system from startup until tnow. For each k,
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k and y(n)k via Bayes’ Rule.
Need to minimize over n(0)

k ’s only, as min must be reached for y(0)
k

’s (lower expected
lifetimes = lower component survival probabilities = lower system survival probability).

P
(
Tsys > t | {n(0)

k , y
(0)
k , tkek;nk}

1:K
)

= min
n
(0)
1 ,...,n

(0)
K

n1−e1∑

l1=0

· · ·
nK−eK∑

lK=0

Φ(l1, . . . , lK)
K∏

k=1

P (Ck
t = lk | n(0)

k , y(0)
k
, tkek;nk)

Survival signature Φ(l1, . . . , lK) [1]
= P (system functions | {lk k ’s function}1:K)

l1 l2 l3 Φ

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0.5

0 2 0 1

l1 l2 l3 Φ

0 2 1 1
1 0 0 0
1 0 1 0.5
1 1 1 0.75
...

...
...

...

Posterior predictive probability that lk of the nk − ek surviving k ’s function at time t:

(
nk − ek
lk

)∫ [
Pk(T > t | T > tnow, λk)

]lk×
[
1− Pk(T > t | T > tnow, λk)

]nk−ek−lk
fλk|...(λk | n

(0)
k , y

(0)
k , tkek;nk) dλk

=

(
nk − ek
lk

) nk−ek−lk∑

j=0

(−1)j
(
nk − ek − lk

j

)(
n
(n)
k y

(n)
k

n
(n)
k y

(n)
k + (lk + j)(tβ − (tnow)β)

)n
(n)
k +1

We assume β = 2, E[T | y(0)1 ] ∈ [9, 11], n(0)
1 ∈ [2, 10], E[T | y(0)2 ] ∈ [4, 5], n(0)

2 ∈ [8, 16], and E[T | y(0)3 ] ∈ [9, 11], n(0)
3 ∈ [1, 5].

Failure times as expected

6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

R
sy

s(t
)

1

2

1

2

3

t10;2 = (5+, 5+)

t22;2 = (4, 5)

t30;1 = (5+)

Surprisingly early failures

4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

R
sy

s(t
)

1

2

1

2

3

t11;2 = (3, 3+)

t21;2 = (1, 3+)

t30;1 = (3+)

Surprisingly late failures

10 12 14 16 18 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

R
sy

s(t
)

1

2

1

2

3

t10;2 = (10+, 10+)

t21;2 = (10, 10+)

t30;1 = (10+)

References
[1] Frank P. A. Coolen and Tahani Coolen-Maturi. Generalizing the signature to systems with multiple types of components. In W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak,

and J. Kacprzyk, editors, Complex Systems and Dependability, volume 170 of Advances in Intelligent and Soft Computing, pages 115–130. Springer, 2012.
[2] G. Walter. Generalized Bayesian Inference under Prior-Data Conflict. PhD thesis, Department of Statistics, LMU Munich, 2013. http://edoc.ub.uni-muenchen.de/17059.

/ school of industrial engineering

Operations, Planning, Accounting & Control www.opac.ieis.tue.nl

System Reliability Estimation
under Prior-Data Conflict
Gero Waltera, Frank P.A. Coolenb, Simme Douwe Flappera

a School of Industrial Engineering, Eindhoven University of Technology, Eindhoven, NL
b Department of Mathematical Sciences, Durham University, Durham, UK

System reliability
We want to find the system reliability
P (Tsys > t) for a one-of-a-kind system:

1

2

1

2

3

n1 = 2

n2 = 2

n3 = 1

The system consists of nk exchangeable
components of types 1 ,. . . , K .

Component Lifetimes
The lifetime for each k is assumed as
Weibull with fixed shape β:

Fk(t | λk) = 1− e−
tβ

λk

E[T | λk] = β
√
λk Γ(1 + 1/β)

We have information on λk from the
component manufacturer, but do not
fully trust it and model knowledge on λk
cautiously with a set of priorsM(0)

k .

Set of Priors
EachM(0)

k is taken as a set of conjugate inverse Gamma
priors. In terms of canonical parameters n(0), y(0),
M(0)

k =
{

IG(n
(0)
k + 1, n

(0)
k y

(0)
k ) | [n(0)

k , n
(0)
k ]× [y(0)

k
, y

(0)
k ]
}

,
where y(0)k = E[λk | n(0)

k , y
(0)
k ] and n(0)

k = pseudocounts.
The prior parameter set Π

(0)
k = [n

(0)
k , n

(0)
k ]× [y(0)

k
, y

(0)
k ] allows

for more imprecision in case of prior-data conflict [2].

Data
We observe the system from startup until tnow. For each k,
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