Robust Bayesian Estimation of System Reliability with Scarce and Surprising Data

Gero Walter¹, Andrew Graham², Frank Coolen²

¹Eindhoven University of Technology, Eindhoven, NL ²Durham University, Durham, UK

g.m.walter@tue.nl

ESREL 2015

We want to learn about the system reliability

We want to learn about the system reliability R_{sys}(t) = P(T_{sys} > t) based on
▶ system run until time t_{now}:
ℓ observations, each being either a failure time t_j or a censoring time t_j⁺ = t_{now}

We want to learn about the system reliability
R_{sys}(t) = P(T_{sys} > t) based on
system run until time t_{now}:
ℓ observations, each being either
a failure time t_j or a censoring time t_j⁺ = t_{now}
cautious assumptions on component reliability:

e.g. from the component manufacturer

expert information,

which we don't trust entirely

We want to learn about the system reliability
R_{sys}(t) = P(T_{sys} > t) based on
system run until time t_{now}:
ℓ observations, each being either a failure time t_j or a censoring time t⁺_j = t_{now}
cautious assumptions on component reliability: expert information, e.g. from the component manufacturer

which we don't trust entirely

How to combine these two information sources?

expert info + data \rightarrow complete picture

expert info	+	data	\rightarrow	complete picture
prior distribution	+	likelihood	\rightarrow	posterior distribution
$p(\lambda)$	×	$p_c(\mathbf{t} \mid \lambda)$	α	$p(\lambda \mid \mathbf{t}) \rightarrow \text{Bayes' Rule}$

expert info	+	data	\rightarrow	complete picture
prior distribution	+	likelihood	\rightarrow	posterior distribution
$\begin{array}{c} p(\lambda) \\ \downarrow \\ \text{inverse Gamma} \\ \cdot \end{array}$	×	$p_c(\mathbf{t} \mid \lambda)$ \downarrow Weibull with	œ	$p(\lambda \mid \mathbf{t}) \rightarrow \text{Bayes' Rule}$ inverse Gamma
prior		fixed shape k		posterior conjugacy
$\lambda \sim \mathrm{IG}(\alpha^{(0)},\beta^{(0)})$		$\mathbf{t} \mid \lambda \sim \operatorname{Wei}_k(\lambda)$		$\lambda \mid \mathbf{t} \sim \mathrm{IG}(\alpha^{(\ell)}, \beta^{(\ell)})$

expert info	+	data	\rightarrow	complete picture
prior distribution	+	likelihood	\rightarrow	posterior distribution
$p(\lambda)$ \downarrow inverse Gamma	×	$p_c(\mathbf{t} \mid \lambda) \downarrow$ Weibull with	œ	$p(\lambda \mid \mathbf{t}) \rightarrow \text{Bayes' Rule}$ \downarrow inverse Gamma
prior		fixed shape k		posterior conjugacy
$\lambda \sim \mathrm{IG}(\alpha^{(0)},\beta^{(0)})$		$\mathbf{t} \mid \boldsymbol{\lambda} \sim \operatorname{Wei}_k(\boldsymbol{\lambda})$		$\lambda \mid \mathbf{t} \sim \mathrm{IG}(\alpha^{(\ell)}, \beta^{(\ell)})$

- ▶ makes learning about component reliability tractable, just update parameters: $\alpha^{(0)} \rightarrow \alpha^{(\ell)}, \beta^{(0)} \rightarrow \beta^{(\ell)}$
- conjugacy holds also for censored observations
- closed form for system reliability function $R_{sys}(t | t)$

What if expert information and data tell different stories?

What if expert information and data tell different stories?

$$n^{(0)} = \alpha^{(0)} - 1$$
, $y^{(0)} = \beta^{(0)} / (\alpha^{(0)} - 1)$, where

$$n^{(\ell)} = n^{(0)} + \ell, \qquad y^{(\ell)} = \frac{n^{(0)}}{n^{(0)} + \ell} y^{(0)} + \frac{\ell}{n^{(0)} + \ell} \cdot \frac{1}{\ell} \sum_{j=1}^{\ell} t_j^k$$

What if expert information and data tell different stories?

$$\begin{split} n^{(0)} &= \alpha^{(0)} - 1 \,, \qquad y^{(0)} = \beta^{(0)} / (\alpha^{(0)} - 1) \,, \qquad \text{where} \\ n^{(\ell)} &= n^{(0)} + \ell \,, \qquad y^{(\ell)} = \frac{n^{(0)}}{n^{(0)} + \ell} \, y^{(0)} + \frac{\ell}{n^{(0)} + \ell} \cdot \frac{1}{\ell} \, \sum_{j=1}^{\ell} t_j^k \\ y^{(0)} &= \mathrm{E}[\lambda] \end{split}$$

What if expert information and data tell different stories?

$$\begin{split} n^{(0)} &= \alpha^{(0)} - 1 \,, \qquad y^{(0)} = \beta^{(0)} / (\alpha^{(0)} - 1) \,, \qquad \text{where} \\ n^{(\ell)} &= n^{(0)} + \ell \,, \qquad y^{(\ell)} = \frac{n^{(0)}}{n^{(0)} + \ell} \, y^{(0)} + \frac{\ell}{n^{(0)} + \ell} \cdot \frac{1}{\ell} \, \Sigma_{j=1}^{\ell} \, t_j^k \\ y^{(0)} &= \mathrm{E}[\lambda] \, y^{(\ell)} = \mathrm{E}[\lambda \mid \mathbf{t}] \end{split}$$

What if expert information and data tell different stories?

$$\begin{split} n^{(0)} &= \alpha^{(0)} - 1 \,, \qquad y^{(0)} = \beta^{(0)} / (\alpha^{(0)} - 1) \,, \qquad \text{where} \\ n^{(\ell)} &= n^{(0)} + \ell \,, \qquad y^{(\ell)} = \frac{n^{(0)}}{n^{(0)} + \ell} \, y^{(0)} + \frac{\ell}{n^{(0)} + \ell} \cdot \frac{1}{\ell} \, \sum_{j=1}^{\ell} t_j^k \\ y^{(0)} &= \mathrm{E}[\lambda] \, y^{(\ell)} = \mathrm{E}[\lambda \mid \mathbf{t}] \quad \text{ML estimator } \hat{\lambda} \end{split}$$

What if expert information and data tell different stories?

$$n^{(0)} = \alpha^{(0)} - 1, \qquad y^{(0)} = \beta^{(0)} / (\alpha^{(0)} - 1), \qquad \text{where}$$

$$n^{(\ell)} = n^{(0)} + \ell, \qquad y^{(\ell)} = \frac{n^{(0)}}{n^{(0)} + \ell} y^{(0)} + \frac{\ell}{n^{(0)} + \ell} \cdot \frac{1}{\ell} \sum_{j=1}^{\ell} t_j^k$$

$$n^{(0)} = \text{pseudocounts} \qquad y^{(0)} = \text{E}[\lambda] \qquad y^{(\ell)} = \text{E}[\lambda \mid \mathbf{t}] \qquad \text{ML estimator } \hat{\lambda}$$

What if expert information and data tell different stories?

TU/e Technische Universiteit Eindhoven University of Technology

TU/e Technische Universiteit Eindhoven University of Technology

TU/e Technische Universiteit Eindhoven University of Technology

TU/e Technische Universiteit Eindhoven University of Technology

Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?

- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?
- Reliability function R(t) is a collection of probability statements:
 R(t) = probability that the system survives past t.
 How can we express uncertainty
 about these probability statements?

- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?
- Reliability function R(t) is a collection of probability statements:
 R(t) = probability that the system survives past t.
 How can we express uncertainty
 about these probability statements?
- Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on *λ*.

- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?
- Reliability function R(t) is a collection of probability statements:
 R(t) = probability that the system survives past t.
 How can we express uncertainty
 about these probability statements?
- Add imprecision as new modelling dimension:
 Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on λ.
 - Separate uncertainty whithin the model (reliability statements) from uncertainty about the model (which parameters).

- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?
- Reliability function R(t) is a collection of probability statements:
 R(t) = probability that the system survives past t.
 How can we express uncertainty
 about these probability statements?
- Add imprecision as new modelling dimension:
 Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on λ.
 - Separate uncertainty whithin the model (reliability statements) from uncertainty about the model (which parameters).
- Can also be seen as systematic sensitivity analysis or robust Bayesian approach.

Uncertainty about probability statements

smaller sets = more precise probability statements

Lottery A

Number of winning tickets: exactly known as 5 out of 100 $\rightarrow P(win) = 5/100$

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 $\rightarrow P(win) = [1/100, 7/100]$

Uncertainty about probability statements

smaller sets = more precise probability statements

Lottery A

Number of winning tickets: exactly known as 5 out of 100 $\rightarrow P(win) = 5/100$

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 $\rightarrow P(\text{win}) = [1/100, 7/100]$

Let parameters $(n^{(0)}, y^{(0)})$ vary in a set $\Pi^{(0)} \implies$ set of priors

Sets of priors \rightarrow sets of posteriors by updating element by element: GBR (Walley 1991) ensures *coherence* (a consistency property)

Uncertainty about probability statements

smaller sets = more precise probability statements

Lottery A

Number of winning tickets: exactly known as 5 out of 100 $\rightarrow P(win) = 5/100$

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 $\rightarrow P(\text{win}) = [1/100, 7/100]$

Let parameters $(n^{(0)}, y^{(0)})$ vary in a set $\Pi^{(0)} \longrightarrow$ set of priors

Sets of priors \rightarrow sets of posteriors by updating element by element: GBR (Walley 1991) ensures *coherence* (a consistency property)

Walter and Augustin (2009), Walter (2013): $\Pi^{(0)} = [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ gives tractability & meaningful reaction to prior-data conflict:

- larger set of posteriors
- more imprecise / cautious probability statements

/

TU/e Technische Universiteit Eindhoven University of Technology

/

7/11

System reliability

Closed form for the system reliability:

$$R_{\text{sys}}(t \mid t_m^{\ell}, n^{(0)}, y^{(0)}) = 1 - \sum_{i=0}^{\ell-m} (-1)^i \binom{\ell-m}{i} \left(\frac{n^{(0)}y^{(0)} + (\ell-m)t_{\text{now}}^k + \sum_{j=1}^m t_j^k}{n^{(0)}y^{(0)} + (\ell-m-i)t_{\text{now}}^k + \sum_{j=1}^m t_j^k + it^k} \right)^{n^{(0)}+m+1}$$

System reliability

Closed form for the system reliability:

$$R_{\text{sys}}(t \mid t_m^{\ell}, n^{(0)}, y^{(0)}) = 1 - \sum_{i=0}^{\ell-m} (-1)^i \binom{\ell-m}{i} \left(\frac{n^{(0)}y^{(0)} + (\ell-m)t_{\text{now}}^k + \sum_{j=1}^m t_j^k}{n^{(0)}y^{(0)} + (\ell-m-i)t_{\text{now}}^k + \sum_{j=1}^m t_j^k + it^k} \right)^{n^{(0)}+m+1}$$

Lower / upper bound through optimization for each t:

$$\underline{R}_{sys}(t \mid t_m^{\ell}, \mathbf{\Pi}^{(0)}) = \min_{n^{(0)} \in [\underline{n}^{(0)}, \overline{n}^{(0)}]} R_{sys}(t \mid t_m^{\ell}, n^{(0)}, \underline{y}^{(0)})$$

$$\overline{R}_{sys}(t \mid t_m^{\ell}, \mathbf{\Pi}^{(0)}) = \max_{n^{(0)} \in [\underline{n}^{(0)}, \overline{n}^{(0)}]} R_{sys}(t \mid t_m^{\ell}, n^{(0)}, \overline{y}^{(0)})$$

TU/e Technische Universiteit Eindhoven University of Technology

9/11

Very limited data: Bayesian model with set of conjugate priors

- Very limited data: Bayesian model with set of conjugate priors
- Set of system reliability functions reflects uncertainties from limited data (with censoring!) and vague expert information

- Very limited data: Bayesian model with set of conjugate priors
- Set of system reliability functions reflects uncertainties from limited data (with censoring!) and vague expert information
- In particular, it reflects prior-data conflict

- Very limited data: Bayesian model with set of conjugate priors
- Set of system reliability functions reflects uncertainties from limited data (with censoring!) and vague expert information
- In particular, it reflects prior-data conflict

- Very limited data: Bayesian model with set of conjugate priors
- Set of system reliability functions reflects uncertainties from limited data (with censoring!) and vague expert information
- In particular, it reflects prior-data conflict
- Nonparametric model (drop Weibull assumption for component lifetimes)

- Very limited data: Bayesian model with set of conjugate priors
- Set of system reliability functions reflects uncertainties from limited data (with censoring!) and vague expert information
- In particular, it reflects prior-data conflict
- Nonparametric model (drop Weibull assumption for component lifetimes)
- Allow dependence between components (common-cause failure, ...)

- Very limited data: Bayesian model with set of conjugate priors
- Set of system reliability functions reflects uncertainties from limited data (with censoring!) and vague expert information
- In particular, it reflects prior-data conflict
- Nonparametric model (drop Weibull assumption for component lifetimes)
- Allow dependence between components (common-cause failure, ...)
- Use model for maintenance planning

References

Coolen, Frank P. A. and Tahani Coolen-Maturi (2012). "Generalizing the Signature to Systems with Multiple Types of Components". In: Complex Systems and Dependability. Ed. by W. Zamojski et al. Vol. 170. Advances in Intelligent and Soft Computing. Springer, pp. 115-130. DOI: 10.1007/978-3-642-30662-4_8. Walley, Peter (1991). Statistical Reasoning with Imprecise Probabilities. London: Chapman and Hall. Walter, Gero (2013). "Generalized Bayesian Inference under Prior-Data Conflict". PhD thesis. Department of Statistics, LMU Munich. URL: http://edoc.ub.uni-muenchen.de/17059/. Walter, Gero and Thomas Augustin (2009). "Imprecision and Prior-Data Conflict in Generalized Bayesian Inference". In: Journal of Statistical Theory and Practice 3, pp. 255-271. DOI: 10.1080/15598608.2009.10411924.

References

- (1) Fanik P.A. Coclien and Tahani Cacler-Matuli. Generalizing the signature to systems with multiple types of components. In W. Zamojski, J. Macuridewicz, J. Surjer, T. Walkawiak, and J. Kacprojk, editors, Complex Systems and Dependability, volume 178 of Advances in Intelligent and Soft Computing, pages 115–130. Springer, 2012.
- [9] G. Water. Generalized Repeater Inference under Prior Data Config. PhD thesis, Department of Statistics, LMU Marich, 2013. https://wdoi.uku.mai.manochem.ide/10111

/ school of industrial engineering

12/11

We assume $\beta = 2$, $E[T \mid y_i^{(0)}] \in [0, 11]$, $a_i^{(0)} \in [2, 10]$, $E[T \mid y_i^{(0)}] \in [4, 5]$, $a_i^{(0)} \in [8, 16]$, and $E[T \mid y_i^{(0)}] \in [9, 11]$, $a_i^{(0)} \in [1, 5]$.

- Frank PA Coolinn and Tahani Caolinn-Maturi. Generalizing the signature to sutterns with multiple score of components. In W Zamoloki J Macuniewicz J Sucier, T. Walkowiek
- J. Kapprojet, edition, Competer ayelitette and expensionary, watere is no expension or memory and den Lampton, programmer and expension of the set of t

chool of industrial engineering

Surprisingly early failures

Surprisingly early failures

12/11

Surprisingly early failures

