Robust Bayesian Estimation of System Reliability with Scarce and Surprising Data

Gero Walter¹, Andrew Graham², Frank Coolen²

¹ Eindhoven University of Technology, Eindhoven, NL ²Durham University, Durham, UK

<g.m.walter@tue.nl>

ESREL 2015

We want to learn about the system reliability $R_{\text{sys}}(t) = P(T_{\text{sys}} > t)$ based on \triangleright system run until time t_{now} : ℓ observations, each being either a failure time t_j or a censoring time $t_j^+ = t_{\sf now}$

/

We want to learn about the system reliability $R_{\text{sys}}(t) = P(T_{\text{sys}} > t)$ based on \triangleright system run until time t_{now} : ℓ observations, each being either a failure time t_j or a censoring time $t_j^+ = t_{\sf now}$ \triangleright cautious assumptions on component reliability: expert information, e.g. from the component manufacturer

which we don't trust entirely

We want to learn about the system reliability $R_{\text{sys}}(t) = P(T_{\text{sys}} > t)$ based on \triangleright system run until time t_{now} : ℓ observations, each being either a failure time t_j or a censoring time $t_j^+ = t_{\sf now}$ \triangleright cautious assumptions on component reliability: expert information, e.g. from the component manufacturer which we don't trust entirely

How to combine these two information sources?

expert info $+$ data \rightarrow complete picture

expert info $+$ data \rightarrow complete picture prior distribution + likelihood \rightarrow posterior distribution *p*(λ) × *p_c*(**t** | λ) ∝ *p*(λ | **t**) ► Bayes' Rule

- \triangleright makes learning about component reliability tractable, just update parameters: $\alpha^{(0)} \rightarrow \alpha^{(\ell)}, \beta^{(0)} \rightarrow \beta^{(\ell)}$
- \triangleright conjugacy holds also for censored observations
- \triangleright closed form for system reliability function $R_{sys}(t | t)$

Prior-data conflict

What if expert information and data tell different stories?

 \triangleright reparametrization helps to understand effect of prior-data conflict:

$$
n^{(0)} = \alpha^{(0)} - 1, \qquad y^{(0)} = \beta^{(0)} / (\alpha^{(0)} - 1), \qquad \text{where}
$$

$$
n^{(\ell)} = n^{(0)} + \ell, \qquad y^{(\ell)} = \frac{n^{(0)}}{n^{(0)} + \ell} y^{(0)} + \frac{\ell}{n^{(0)} + \ell} \cdot \frac{1}{\ell} \sum_{j=1}^{\ell} t_j^k
$$

 \triangleright reparametrization helps to understand effect of prior-data conflict:

$$
n^{(0)} = \alpha^{(0)} - 1, \qquad y^{(0)} = \beta^{(0)} / (\alpha^{(0)} - 1), \qquad \text{where}
$$

$$
n^{(\ell)} = n^{(0)} + \ell, \qquad y^{(\ell)} = \frac{n^{(0)}}{n^{(0)} + \ell} y^{(0)} + \frac{\ell}{n^{(0)} + \ell} \cdot \frac{1}{\ell} \sum_{j=1}^{\ell} t_j^k
$$

$$
y^{(0)} = E[\lambda]
$$

 \triangleright reparametrization helps to understand effect of prior-data conflict:

$$
n^{(0)} = \alpha^{(0)} - 1, \qquad y^{(0)} = \beta^{(0)} / (\alpha^{(0)} - 1), \qquad \text{where}
$$

$$
n^{(\ell)} = n^{(0)} + \ell, \qquad y^{(\ell)} = \frac{n^{(0)}}{n^{(0)} + \ell} y^{(0)} + \frac{\ell}{n^{(0)} + \ell} \cdot \frac{1}{\ell} \sum_{j=1}^{\ell} t_j^k
$$

$$
y^{(0)} = E[\lambda] \qquad y^{(\ell)} = E[\lambda | t]
$$

 \triangleright reparametrization helps to understand effect of prior-data conflict:

$$
n^{(0)} = \alpha^{(0)} - 1, \qquad y^{(0)} = \beta^{(0)}/(\alpha^{(0)} - 1), \qquad \text{where}
$$

$$
n^{(\ell)} = n^{(0)} + \ell, \qquad y^{(\ell)} = \frac{n^{(0)}}{n^{(0)} + \ell} y^{(0)} + \frac{\ell}{n^{(0)} + \ell} \cdot \frac{1}{\ell} \sum_{j=1}^{\ell} t_j^k
$$

$$
y^{(0)} = E[\lambda] \qquad y^{(\ell)} = E[\lambda | t] \qquad \text{ML estimator } \hat{\lambda}
$$

 \triangleright reparametrization helps to understand effect of prior-data conflict:

 \triangleright reparametrization helps to understand effect of prior-data conflict:

/

/

Averaging property holds *for all conjugate models* (!) Can we mitigate this and still keep tractability?

- **Averaging property holds** *for all conjugate models* (!) Can we mitigate this and still keep tractability?
- **EXECT** Reliability function $R(t)$ is a collection of probability statements: $R(t)$ = probability that the system survives past *t*. How can we express uncertainty about these probability statements?

- **Averaging property holds** *for all conjugate models* (!) Can we mitigate this and still keep tractability?
- **EXECT** Reliability function $R(t)$ is a collection of probability statements: $R(t)$ = probability that the system survives past *t*. How can we express uncertainty about these probability statements?
- ▶ Add **imprecision** as new modelling dimension: **Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on** λ**.**

- Averaging property holds *for all conjugate models* (!) Can we mitigate this and still keep tractability?
- **EXECT** Reliability function $R(t)$ is a collection of probability statements: $R(t)$ = probability that the system survives past *t*. How can we express uncertainty about these probability statements?
- ▶ Add **imprecision** as new modelling dimension: **Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on** λ**.**
	- ► Separate uncertainty *whithin the model* (reliability statements) from uncertainty *about the model* (which parameters).

- Averaging property holds *for all conjugate models* (!) Can we mitigate this and still keep tractability?
- **EXECT** Reliability function $R(t)$ is a collection of probability statements: $R(t)$ = probability that the system survives past *t*. How can we express uncertainty about these probability statements?
- ▶ Add **imprecision** as new modelling dimension: **Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on** λ**.**
	- ► Separate uncertainty *whithin the model* (reliability statements) from uncertainty *about the model* (which parameters).
- \triangleright Can also be seen as systematic sensitivity analysis or robust Bayesian approach.

Uncertainty about probability statements

smaller sets = more precise probability statements

Lottery A

Number of winning tickets: exactly known as 5 out of 100 \rightarrow *P*(win) = 5/100

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 \rightarrow *P*(win) = [1/100, 7/100]

Uncertainty about probability statements

smaller sets = more precise probability statements

Lottery A

Number of winning tickets: exactly known as 5 out of 100 \rightarrow *P*(win) = 5/100

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 \rightarrow *P*(win) = [1/100, 7/100]

Let parameters $(n^{(0)},y^{(0)})$ vary in a set $\Pi^{(0)}\Longrightarrow$ set of priors

Sets of priors \rightarrow sets of posteriors by updating element by element: GBR (Walley [1991\)](#page-50-0) ensures *coherence* (a consistency property)

Uncertainty about probability statements

smaller sets = more precise probability statements

Lottery A

Number of winning tickets: exactly known as 5 out of 100 \rightarrow *P*(win) = 5/100

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 \rightarrow *P*(win) = [1/100, 7/100]

Let parameters $(n^{(0)},y^{(0)})$ vary in a set $\Pi^{(0)}\Longrightarrow$ set of priors

Sets of priors \rightarrow sets of posteriors by updating element by element: GBR (Walley [1991\)](#page-50-0) ensures *coherence* (a consistency property)

Walter and Augustin [\(2009\)](#page-50-1), Walter [\(2013\)](#page-50-2): $\Pi^{(0)} = [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [y^{(0)}, \overline{y}^{(0)}]$ gives tractability & meaningful reaction to prior-data conflict:

larger set of posteriors

/

 \triangleright more imprecise / cautious probability statements

7/11

/

System reliability

 \blacktriangleright Closed form for the system reliability:

$$
R_{\text{sys}}(t \mid t_{m}^{\ell}, n^{(0)}, y^{(0)})
$$

= $1 - \sum_{i=0}^{\ell-m} (-1)^i \binom{\ell-m}{i} \left(\frac{n^{(0)} y^{(0)} + (\ell-m) t_{\text{now}}^k + \sum_{j=1}^m t_j^k}{n^{(0)} y^{(0)} + (\ell-m-i) t_{\text{now}}^k + \sum_{j=1}^m t_j^k + it^k} \right)^{n^{(0)} + m + 1}$

System reliability

 \blacktriangleright Closed form for the system reliability:

$$
R_{\text{sys}}(t \mid t_{m}^{\ell}, n^{(0)}, y^{(0)})
$$

= $1 - \sum_{i=0}^{\ell-m} (-1)^i {(\ell - m) \choose i} \left(\frac{n^{(0)} y^{(0)} + (\ell - m) t_{\text{now}}^k + \sum_{j=1}^m t_j^k}{n^{(0)} y^{(0)} + (\ell - m - i) t_{\text{now}}^k + \sum_{j=1}^m t_j^k + it^k} \right)^{n^{(0)} + m + 1}$

▶ Lower / upper bound through optimization for each *t*:

$$
\underline{R}_{\text{sys}}(t \mid t_{m}^{\ell}, \Pi^{(0)}) = \min_{n^{(0)} \in [\underline{n}^{(0)}, \overline{n}^{(0)}]} R_{\text{sys}}(t \mid t_{m}^{\ell}, n^{(0)}, \underline{y}^{(0)})
$$

$$
\overline{R}_{\text{sys}}(t \mid t_{m}^{\ell}, \Pi^{(0)}) = \max_{n^{(0)} \in [\underline{n}^{(0)}, \overline{n}^{(0)}]} R_{\text{sys}}(t \mid t_{m}^{\ell}, n^{(0)}, \overline{y}^{(0)})
$$

 \blacktriangleright Very limited data: Bayesian model with set of conjugate priors

- \triangleright Very limited data: Bayesian model with set of conjugate priors
- \triangleright Set of system reliability functions reflects uncertainties from limited data (with censoring!) and vague expert information

- \triangleright Very limited data: Bayesian model with set of conjugate priors
- \triangleright Set of system reliability functions reflects uncertainties from limited data (with censoring!) and vague expert information
- In particular, it reflects *prior-data conflict*

- \triangleright Very limited data: Bayesian model with set of conjugate priors
- \triangleright Set of system reliability functions reflects uncertainties from limited data (with censoring!) and vague expert information
- In particular, it reflects *prior-data conflict*
- Parallel system \rightarrow general system layouts (*k*-out-of-*n*, series/parallel combinations) with *multiple types of components* using the survival signature (Coolen and Coolen-Maturi [2012\)](#page-50-3)

- \triangleright Very limited data: Bayesian model with set of conjugate priors
- \triangleright Set of system reliability functions reflects uncertainties from limited data (with censoring!) and vague expert information
- In particular, it reflects *prior-data conflict*
- Parallel system \rightarrow general system layouts (*k*-out-of-*n*, series/parallel combinations) with *multiple types of components* using the survival signature (Coolen and Coolen-Maturi [2012\)](#page-50-3)
- \blacktriangleright Nonparametric model (drop Weibull assumption for component lifetimes)

- \triangleright Very limited data: Bayesian model with set of conjugate priors
- \triangleright Set of system reliability functions reflects uncertainties from limited data (with censoring!) and vague expert information
- In particular, it reflects *prior-data conflict*
- Parallel system \rightarrow general system layouts (*k*-out-of-*n*, series/parallel combinations) with *multiple types of components* using the survival signature (Coolen and Coolen-Maturi [2012\)](#page-50-3)
- \blacktriangleright Nonparametric model (drop Weibull assumption for component lifetimes)
- Allow dependence between components (common-cause failure, . . .)

- \triangleright Very limited data: Bayesian model with set of conjugate priors
- \triangleright Set of system reliability functions reflects uncertainties from limited data (with censoring!) and vague expert information
- In particular, it reflects *prior-data conflict*
- Parallel system \rightarrow general system layouts (*k*-out-of-*n*, series/parallel combinations) with *multiple types of components* using the survival signature (Coolen and Coolen-Maturi [2012\)](#page-50-3)
- \blacktriangleright Nonparametric model (drop Weibull assumption for component lifetimes)
- Allow dependence between components (common-cause failure, . . .)
- \blacktriangleright Use model for maintenance planning

References

Coolen, Frank P. A. and Tahani Coolen-Maturi (2012). "Generalizing the Signature to Systems with Multiple Types of Components". In: *Complex Systems and Dependability*. Ed. by W. Zamojski et al. Vol. 170. Advances in Intelligent and Soft Computing. Springer, pp. 115–130. DOI: $10.1007/978 - 3 - 642 - 30662 - 4$ 8. Walley, Peter (1991). *Statistical Reasoning with Imprecise Probabilities*. London: Chapman and Hall. Walter, Gero (2013). "Generalized Bayesian Inference under Prior-Data Conflict". PhD thesis. Department of Statistics, LMU Munich. URL: <http://edoc.ub.uni-muenchen.de/17059/>. Walter, Gero and Thomas Augustin (2009). "Imprecision and Prior-Data Conflict in Generalized Bayesian Inference". In: *Journal of Statistical Theory and Practice* 3, pp. 255–271. DOI: [10.1080/15598608.2009.10411924](http://dx.doi.org/10.1080/15598608.2009.10411924).

General systems via the survival signature

/

- **References**
[1] Frank P.A. Coolen and Tahani Coolen-Maturi. Generalizing the signature to systems with multiple types of components. In W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak,
- and J. Kacprzyk, editors, *Complex Systems and Dependability*, volume 170 of *Advances in Intelligent and Soft Computing*, pages 115–130. Springer, 2012. [2] G. Walter. *Generalized Bayesian Inference under Prior-Data Conflict*. PhD thesis, Department of Statistics, LMU Munich, 2013. http://edoc.ub.uni-muenchen.de/17059.

/ school of industrial engineering

Technische Universiteit Eindhoven **University of Technology**

General systems via the survival signature

12/11

 \mathbb{R} \mathbb{R}

n^k − e^k − l^k

/ school of industrial engineering

- **References**
[1] Frank P.A. Coolen and Tahani Coolen-Maturi. Generalizing the signature to systems with multiple types of components. In W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak,
- and J. Kacprzyk, editors, *Complex Systems and Dependability*, volume 170 of *Advances in Intelligent and Soft Computing*, pages 115–130. Springer, 2012. [2] G. Walter. *Generalized Bayesian Inference under Prior-Data Conflict*. PhD thesis, Department of Statistics, LMU Munich, 2013. http://edoc.ub.uni-muenchen.de/17059.

/ school of industrial engineering

Surprisingly early failures

^ek;n^k }

0.0 0.2 0.4 0.6 0.8 1.0

t $\overline{1}$ 1;2 = (3, 3⁺)

k

 $12/11$

 \mathbb{R} \mathbb{R}

n (n) $\overline{}$

> (0) $\overline{}$

Surprisingly late failures

n^k − e^k − l^k

Failure times as expected

Surprisingly early failures

 \cdot \cdot

[1] Frank P. A. Coolen and Tahani Coolen-Maturi. Generalizing the signature to systems with multiple types of components. In W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak,

[2] G. Walter. *Generalized Bayesian Inference under Prior-Data Conflict*. PhD thesis, Department of Statistics, LMU Munich, 2013. http://edoc.ub.uni-muenchen.de/17059.

and J. Kacprzyk, editors, *Complex Systems and Dependability*, volume 170 of *Advances in Intelligent and Soft Computing*, pages 115–130. Springer, 2012.

0.0 0.2 0.4 0.6 0.8 1.0

t $\overline{1}$ 0;2 = (5⁺, 5⁺) ^ek;n^k }

k

 $12/11$

 \mathbb{R} \mathbb{R}

n (n) $\overline{}$

> (0) $\overline{}$

n^k − e^k − l^k

t $\overline{1}$ 1;2 = (3, 3⁺)

Surprisingly early failures

 \cdot \cdot

t $\overline{1}$ 0;2 = (5⁺, 5⁺)