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Outline

1. Bayesian inference & prior-data conflict
2. Generalised Bayesian inference with sets of priors

(joint work with Thomas Augustin)
3. Common-cause failure modeling

(joint work with Matthias Troffaes and Dana Kelly)
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Beta-Binomial Model

Bayesian Inference & Prior-Data Conflict
The Bayesian approach to statistical inference

prior p(ϑ) + likelihood f(x | ϑ) I posterior p(ϑ | x)
All inferences are based on the posterior (e.g., point estimate, . . . )

Assigning a certain prior distribution on ϑ
= defining a conglomerate of probability statements (on ϑ).

Prior-Data Conflict
I informative prior beliefs and trusted data

(sampling model correct, no outliers, etc.) are in conflict
I “[. . . ] the prior [places] its mass primarily on distributions in the

sampling model for which the observed data is surprising”
(Evans & Moshonov, 2006)

I there are not enough data to overrule the prior
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Prior-Data Conflict: Basic Example

I Bernoulli observations: 0/1 observations (team wins no/yes)

I given: a set of observations and strong prior information
I we are, e.g., interested in (predictive) probability P that team wins

in the next match

Beta-Binomial Model
data : s | θ ∼ Binom(n, θ)

conjugate prior: θ | n(0), y(0)
∼ Beta(n(0), y(0))

posterior: θ | n(n), y(n)
∼ Beta(n(n), y(n))

where s = number of wins in the n matches observed
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Beta-Binomial Model
data : s | θ ∼ Binom(n, θ)

conjugate prior: θ | n(0), y(0)
∼ Beta(n(0), y(0))

posterior: θ | n(n), y(n)
∼ Beta(n(n), y(n))

P = E[θ | n(n), y(n)] = y(n) =
n(0)

n(0) + n
· y(0) +

n
n(0) + n

·
s
n

n(n) = n(0) + n Var(θ | n(n), y(n)) =
y(n)(1 − y(n))

n(n) + 1
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Beta-Binomial Model (BBM)
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Weighted average structure
is underneath all common
conjugate priors for
exponential family
sampling distributions!

no conflict:
prior n(0) = 8, y(0) = 0.75
data s/n = 12/16 = 0.75

H

n(n) = 24, y(n) = 0.75
N

prior-data conflict:

prior n(0) = 8, y(0) = 0.25
data s/n = 16/16 = 1

H

n(n)
∈ [20,24],

y(n)
∈ [0.73,0.86]

Gero Walter Prior-Data Conflict in Generalised Bayesian Inference 6/16



Prior-Data Conflict
Generalised Bayesian Inference

Common-Cause Failure Modeling

Bayesian Inference
Basic Example
Beta-Binomial Model

Beta-Binomial Model (BBM)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y(
0)

re
sp

.
y(

n)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y(
0)

re
sp

.
y(

n)

12 out of 16

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y(
0)

re
sp

.
y(

n)

12 out of 16

16 out of 16

Weighted average structure
is underneath all common
conjugate priors for
exponential family
sampling distributions!

no conflict:
prior n(0) = 8, y(0) = 0.75
data s/n = 12/16 = 0.75

H

n(n) = 24, y(n) = 0.75

N
prior-data conflict:

prior n(0) = 8, y(0) = 0.25
data s/n = 16/16 = 1

H

n(n)
∈ [20,24],

y(n)
∈ [0.73,0.86]

Gero Walter Prior-Data Conflict in Generalised Bayesian Inference 6/16



Prior-Data Conflict
Generalised Bayesian Inference

Common-Cause Failure Modeling

Bayesian Inference
Basic Example
Beta-Binomial Model

Beta-Binomial Model (BBM)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y(
0)

re
sp

.
y(

n)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y(
0)

re
sp

.
y(

n)

12 out of 16

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y(
0)

re
sp

.
y(

n)

12 out of 16

16 out of 16

Weighted average structure
is underneath all common
conjugate priors for
exponential family
sampling distributions!

no conflict:
prior n(0) = 8, y(0) = 0.75
data s/n = 12/16 = 0.75

H

n(n) = 24, y(n) = 0.75

N

prior-data conflict:

prior n(0) = 8, y(0) = 0.25
data s/n = 16/16 = 1

H

n(n)
∈ [20,24],

y(n)
∈ [0.73,0.86]

Gero Walter Prior-Data Conflict in Generalised Bayesian Inference 6/16



Prior-Data Conflict
Generalised Bayesian Inference

Common-Cause Failure Modeling

Bayesian Inference
Basic Example
Beta-Binomial Model

Beta-Binomial Model (BBM)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y(
0)

re
sp

.
y(

n)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y(
0)

re
sp

.
y(

n)

12 out of 16

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y(
0)

re
sp

.
y(

n)

12 out of 16

16 out of 16

Weighted average structure
is underneath all common
conjugate priors for
exponential family
sampling distributions!

no conflict:
prior n(0) = 8, y(0) = 0.75
data s/n = 12/16 = 0.75

H

n(n) = 24, y(n) = 0.75
N

prior-data conflict:

prior n(0) = 8, y(0) = 0.25
data s/n = 16/16 = 1

H

n(n)
∈ [20,24],

y(n)
∈ [0.73,0.86]

Gero Walter Prior-Data Conflict in Generalised Bayesian Inference 6/16



Prior-Data Conflict
Generalised Bayesian Inference

Common-Cause Failure Modeling

Bayesian Inference
Basic Example
Beta-Binomial Model

Beta-Binomial Model (BBM)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y(
0)

re
sp

.
y(

n)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y(
0)

re
sp

.
y(

n)

12 out of 16

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y(
0)

re
sp

.
y(

n)

12 out of 16

16 out of 16

Weighted average structure
is underneath all common
conjugate priors for
exponential family
sampling distributions!

no conflict:
prior n(0) = 8, y(0) = 0.75
data s/n = 12/16 = 0.75

H

n(n) = 24, y(n) = 0.75
N

prior-data conflict:

prior n(0) = 8, y(0) = 0.25
data s/n = 16/16 = 1

H

n(n)
∈ [20,24],

y(n)
∈ [0.73,0.86]

Gero Walter Prior-Data Conflict in Generalised Bayesian Inference 6/16



Prior-Data Conflict
Generalised Bayesian Inference

Common-Cause Failure Modeling

Why Generalise Bayesian Inference?
Sets of Priors
Model Discussion

Why Generalise Bayesian Inference?

Bayesian theory lacks the ability to specifiy the degree of uncertainty in
probability statements encoded in a (prior, posterior) distribution.

Variance or stretch of a distribution for describing uncertainty?

I Does not work in the case of prior-data conflict:
In conjugate updating, the posterior variance does not depend
on the degree of prior-data conflict in most cases.

I How to express the precision of a probability statement?
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Why Generalise Bayesian Inference?
Sets of Priors
Model Discussion

Imprecision

Add imprecision as new model dimension:
Sets of priors model uncertainty in probability statements

Interpretation
smaller sets J I more precise probability statements

Lottery A
Number of winning tickets:

exactly known as 5 out of 100
I P(win) = 5/100

Lottery B
Number of winning tickets:

not exactly known, supposedly
between 1 and 7 out of 100
I P(win) = [1/100, 7/100]
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Why Generalise Bayesian Inference?
Sets of Priors
Model Discussion

Bayesian Inference with Sets of Priors

Standard Bayesian inference procedure
prior + likelihood I posterior

using Bayes’ Rule
All inferences are based on the posterior

Generalised Bayesian inference procedure
set of priors + likelihood I set of posteriors

Coherence (consistency of inferences) ensured by using
Generalised Bayes’ Rule (GBR, Walley 1991)
= element-wise application of Bayes’ Rule
All inferences are based on the set of posteriors

Let hyperparameters (n(0), y(0)) vary in a set IΠ(0) I set of priors
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Why Generalise Bayesian Inference?
Sets of Priors
Model Discussion

Imprecise BBM with n(0) fixed: IDM (Walley 1996)
Quaghebeur & de Cooman (2005)
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Model Discussion

I Easy to handle, generally favourable inference properties, e.g.:
n→∞

I y(n) stretch in IΠ(n)
→ 0 I precise inferences

I Set shape is crucial modeling choice:
trade-off between model complexity and model behaviour

I IΠ(0) = n(0)
× [y(0), y(0)

] (Walley 1996; Quaghebeur & de Cooman 2005):

IΠ(n) = n(n)
× [y(n), y(n)

] I optimise over [y(n), y(n)
] only,

but no prior-data conflict sensitivity

I IΠ(0) = [n(0),n(0)
] × [y(0), y(0)

] (Walley 1991; Walter & Augustin 2009):
IΠ(n) have non-trivial forms (banana / spotlight), but prior-data
conflict sensitivity and closed form for min /max y(n) over IΠ(n)

implementation: R package luck
I Other set shapes are possible, but may be more difficult to handle
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Common-Cause Failures

Source: Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Fukushima_I_by_Digital_Globe.jpg

common-cause failure
simultaneous failure of several redundant components
due to a common or shared root cause (Høyland & Rausand, 1994)

Source: http://www.diakont.com/solutions/nuclear-energy/
plant-systems/diesel-generator-control-systems/
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Conclusion

I Conjugate priors are a convenient tool for Bayesian inference
but there are some pitfalls

I Hyperparameters n(0), y(0) are easy to interpret and elicit
I Averaging property makes calculations simple, but leads to

inadequate model behaviour in case of prior-data conflict

I Sets of conjugate priors maintain advantages & mitigate issues
I Hyperparameter set shape is important
I Reasonable choice: rectangular IΠ(0) = [n(0),n(0)

] × [y(0), y(0)
]

(Walter & Augustin 2009: generalised iLUCK-models, luck)
I Bounds for hyperparameters are easy to interpret and elicit
I Additional imprecison in case of prior-data conflict

leads to cautious inferences if, and only if, caution is needed
I Shape for more precision in case of strong prior-data agreement is

in development (joint work with Frank Coolen and Miķ Bickis)
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