

Prior-Data Conflict in Generalised Bayesian Inference

Gero Walter

Department of Statistics Ludwig-Maximilians-Universität München (LMU)

September 16th, 2013

Outline

- 1. Bayesian inference & prior-data conflict
- 2. Generalised Bayesian inference with sets of priors (joint work with Thomas Augustin)
- Common-cause failure modeling (joint work with Matthias Troffaes and Dana Kelly)

Bayesian Inference Basic Example Beta-Binomial Model

Bayesian Inference & Prior-Data Conflict

The Bayesian approach to statistical inference

prior $p(\vartheta)$ + likelihood $f(\mathbf{x} | \vartheta)$ \implies posterior $p(\vartheta | \mathbf{x})$ All inferences are based on the posterior (e.g., point estimate, ...)

Bayesian Inference & Prior-Data Conflict

The Bayesian approach to statistical inference

prior $p(\vartheta)$ + likelihood $f(\mathbf{x} | \vartheta)$ \implies posterior $p(\vartheta | \mathbf{x})$ All inferences are based on the posterior (e.g., point estimate, ...)

Assigning a certain prior distribution on ϑ

= defining a conglomerate of probability statements (on ϑ).

Bayesian Inference & Prior-Data Conflict

The Bayesian approach to statistical inference

prior $p(\vartheta)$ + likelihood $f(\mathbf{x} | \vartheta)$ \longrightarrow posterior $p(\vartheta | \mathbf{x})$

All inferences are based on the posterior (e.g., point estimate, ...)

Assigning a certain prior distribution on ϑ

= defining a conglomerate of probability statements (on ϑ).

Prior-Data Conflict

- informative prior beliefs and trusted data (sampling model correct, no outliers, etc.) are in conflict
- "[...] the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising" (Evans & Moshonov, 2006)
- there are not enough data to overrule the prior

Bayesian Inference Basic Example Beta-Binomial Model

Prior-Data Conflict: Basic Example

Bernoulli observations: 0/1 observations (team wins no/yes)

Prior-Data Conflict: Basic Example

- Bernoulli observations: 0/1 observations (team wins no/yes)
- given: a set of observations and strong prior information

Prior-Data Conflict: Basic Example

- Bernoulli observations: 0/1 observations (team wins no/yes)
- given: a set of observations and strong prior information
- we are, e.g., interested in (predictive) probability P that team wins in the next match

ヘロト ヘアト ヘビト・

Prior-Data Conflict: Basic Example

- Bernoulli observations: 0/1 observations (team wins no/yes)
- given: a set of observations and strong prior information
- we are, e.g., interested in (predictive) probability P that team wins in the next match

Beta-Binomial Model

data :	s θ	\sim	$Binom(n, \theta)$
conjugate prior:	θ n⁽⁰⁾, y⁽⁰⁾	\sim	Beta(<i>n</i> ⁽⁰⁾ , <i>y</i> ⁽⁰⁾)
posterior:	$\theta \mid n^{(n)}, y^{(n)}$	~	$Beta(n^{(n)}, y^{(n)})$

where s = number of wins in the *n* matches observed

Bayesian Inference Basic Example Beta-Binomial Model

Beta-Binomial Model

Beta-Binomial Model

data :	s θ	\sim	$Binom(n, \theta)$
conjugate prior:	θ n ⁽⁰⁾ , y ⁽⁰⁾	\sim	Beta(<i>n</i> ⁽⁰⁾ , <i>y</i> ⁽⁰⁾)
posterior:	$\theta \mid \mathbf{n}^{(n)}, \mathbf{y}^{(n)}$	~	$Beta(n^{(n)}, y^{(n)})$

イロト イポト イヨト イヨト

Bayesian Inference Basic Example Beta-Binomial Model

Beta-Binomial Model

Beta-Binomial Model

data :	s θ	\sim	$Binom(n, \theta)$
conjugate prior:	θ n ⁽⁰⁾ , y ⁽⁰⁾	~	Beta(<i>n</i> ⁽⁰⁾ , <i>y</i> ⁽⁰⁾)
posterior:	$\theta \mid n^{(n)}, y^{(n)}$	~	$Beta(n^{(n)}, y^{(n)})$

 $P = \mathsf{E}[\theta \mid \mathbf{n}^{(n)}, \mathbf{y}^{(n)}]$

イロト イポト イヨト イヨト

Bayesian Inference Basic Example Beta-Binomial Model

Beta-Binomial Model

Beta-Binomial Model

data :	s θ	\sim	$Binom(n, \theta)$
conjugate prior:	$\theta \mid n^{(0)}, y^{(0)}$	\sim	Beta(<i>n</i> ⁽⁰⁾ , y ⁽⁰⁾)
posterior:	$\theta \mid n^{(n)}, y^{(n)}$	~	$Beta(n^{(n)}, y^{(n)})$

$$P = \mathsf{E}[\theta \mid n^{(n)}, y^{(n)}] = y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n^{(0)}}$$

イロト イポト イヨト イヨト

Bayesian Inference Basic Example Beta-Binomial Model

Beta-Binomial Model

Beta-Binomial Model

data :	s θ	\sim	$Binom(n, \theta)$
conjugate prior:	$\theta \mid \mathbf{n}^{(0)}, \mathbf{y}^{(0)}$	~	Beta(<i>n</i> ⁽⁰⁾ , y ⁽⁰⁾)
posterior:	$\theta \mid \mathbf{n}^{(n)}, \mathbf{y}^{(n)}$	~	$Beta(n^{(n)}, y^{(n)})$

$$P = \mathsf{E}[\theta \mid n^{(n)}, y^{(n)}] = y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}$$
$$n^{(n)} = n^{(0)} + n$$

イロト イポト イヨト イヨト

Bayesian Inference Basic Example Beta-Binomial Model

Beta-Binomial Model

Beta-Binomial Model

data :	s θ	\sim	$Binom(n, \theta)$
conjugate prior:	θ n ⁽⁰⁾ , y ⁽⁰⁾	\sim	Beta(<i>n</i> ⁽⁰⁾ , y ⁽⁰⁾)
posterior:	$\theta \mid n^{(n)}, y^{(n)}$	~	$Beta(n^{(n)}, y^{(n)})$

$$P = \mathsf{E}[\theta \mid n^{(n)}, y^{(n)}] = y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}$$
$$n^{(n)} = n^{(0)} + n \qquad \operatorname{Var}(\theta \mid n^{(n)}, y^{(n)}) = \frac{y^{(n)}(1 - y^{(n)})}{n^{(n)} + 1}$$

イロン イロン イヨン イヨン

Bayesian Inference Basic Example Beta-Binomial Model

Beta-Binomial Model (BBM)

no conflict:

prior $n^{(0)} = 8$, $y^{(0)} = 0.75$ data s/n = 12/16 = 0.75

Bayesian Inference Basic Example Beta-Binomial Model

Beta-Binomial Model (BBM)

no conflict: prior $n^{(0)} = 8$, $y^{(0)} = 0.75$ data s/n = 12/16 = 0.75 $n^{(n)} = 24$, $y^{(n)} = 0.75$

< ロ > < 同 > < 三 >

Bayesian Inference Basic Example Beta-Binomial Model

Beta-Binomial Model (BBM)

no conflict: prior $n^{(0)} = 8$, $y^{(0)} = 0.75$ data s/n = 12/16 = 0.75 $n^{(n)} = 24, y^{(n)} = 0.75$ prior-data conflict: prior $n^{(0)} = 8$, $y^{(0)} = 0.25$ data s/n = 16/16 = 1

Bayesian Inference Basic Example Beta-Binomial Model

Beta-Binomial Model (BBM)

no conflict: prior $n^{(0)} = 8$, $y^{(0)} = 0.75$ data s/n = 12/16 = 0.75 $n^{(n)} = 24, y^{(n)} = 0.75$ prior-data conflict: prior $n^{(0)} = 8$, $y^{(0)} = 0.25$ data s/n = 16/16 = 1

Bayesian Inference Basic Example Beta-Binomial Model

Beta-Binomial Model (BBM)

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Why Generalise Bayesian Inference?

Bayesian theory lacks the ability to specify the degree of uncertainty in probability statements encoded in a (prior, posterior) distribution.

Why Generalise Bayesian Inference?

Bayesian theory lacks the ability to specify the degree of uncertainty in probability statements encoded in a (prior, posterior) distribution.

Variance or stretch of a distribution for describing uncertainty?

Why Generalise Bayesian Inference?

Bayesian theory lacks the ability to specify the degree of uncertainty in probability statements encoded in a (prior, posterior) distribution.

Variance or stretch of a distribution for describing uncertainty?

- Does not work in the case of prior-data conflict: In conjugate updating, the posterior variance does not depend on the degree of prior-data conflict in most cases.
- How to express the precision of a probability statement?

Imprecision

Add imprecision as new model dimension: Sets of priors model uncertainty in probability statements

Imprecision

Add imprecision as new model dimension: Sets of priors model uncertainty in probability statements

Interpretation

smaller sets - more precise probability statements

Lottery A

Number of winning tickets: exactly known as 5 out of 100 $\rightarrow P(win) = 5/100$

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 $\rightarrow P(win) = [1/100, 7/100]$

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Bayesian Inference with Sets of Priors

Standard Bayesian inference procedure

prior + likelihood --> posterior

using Bayes' Rule

All inferences are based on the posterior

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Bayesian Inference with Sets of Priors

Standard Bayesian inference procedure

prior + likelihood --> posterior

using Bayes' Rule

All inferences are based on the posterior

Generalised Bayesian inference procedure

set of priors + likelihood \rightarrow set of posteriors *Coherence* (consistency of inferences) ensured by using *Generalised Bayes' Rule* (GBR, Walley 1991) = element-wise application of Bayes' Rule All inferences are based on the set of posteriors

Bayesian Inference with Sets of Priors

Standard Bayesian inference procedure

prior + likelihood --> posterior

using Bayes' Rule

All inferences are based on the posterior

Generalised Bayesian inference procedure

set of priors + likelihood → set of posteriors *Coherence* (consistency of inferences) ensured by using *Generalised Bayes' Rule* (GBR, Walley 1991) = element-wise application of Bayes' Rule All inferences are based on the set of posteriors

Let hyperparameters $(n^{(0)}, y^{(0)})$ vary in a set

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Imprecise BBM with n⁽⁰⁾ fixed: ^{IDM (Walley 1996)} Quaghebeur & de Cooman (2005)

no conflict:

prior $n^{(0)} = 8$, $y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Imprecise BBM with n⁽⁰⁾ fixed: ^{IDM (Walley 1996)} Quaghebeur & de Cooman (2005)

no conflict:

prior $n^{(0)} = 8$, $y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75

$$n^{(n)} = 24, \, y^{(n)} \in [0.73, 0.77]$$

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Imprecise BBM with n⁽⁰⁾ fixed: ^{IDM} (Walley 1996) Quaghebeur & de Cooman (2005)

no conflict:

prior $n^{(0)} = 8$, $y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75

 $n^{(n)} = 24, \, y^{(n)} \in [0.73, 0.77]$

prior-data conflict:

prior $n^{(0)} = 8$, $y^{(0)} \in [0.2, 0.3]$ data s/n = 16/16 = 1

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Imprecise BBM with n⁽⁰⁾ fixed: ^{IDM (Walley 1996)} Quaghebeur & de Cooman (2005)

no conflict: prior $n^{(0)} = 8$, $v^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75 $n^{(n)} = 24, y^{(n)} \in [0.73, 0.77]$ prior-data conflict: prior $n^{(0)} = 8, y^{(0)} \in [0.2, 0.3]$ data s/n = 16/16 = 1

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Imprecise BBM with $[\underline{n}^{(0)}, \overline{n}^{(0)}]$: Walley (1991, §5.4.3) Walter & Augustin (2009)

no conflict:

prior $n^{(0)} \in [4, 8]$, $y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Imprecise BBM with $[\underline{n}^{(0)}, \overline{n}^{(0)}]$: Walley (1991, §5.4.3) Walter & Augustin (2009)

no conflict: prior $n^{(0)} \in [4, 8], y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75

$$y^{(n)} \in [0.73, 0.77]$$

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Imprecise BBM with $[\underline{n}^{(0)}, \overline{n}^{(0)}]$: Walley (1991, §5.4.3) Walter & Augustin (2009)

no conflict: prior $n^{(0)} \in [4, 8], y^{(0)} \in [0.7, 0.8]$

data s/n = 12/16 = 0.75

 $y^{(n)} \in [0.73, 0.77]$

prior-data conflict:

prior $n^{(0)} \in [4, 8]$, $y^{(0)} \in [0.2, 0.3]$ data s/n = 16/16 = 1

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Imprecise BBM with $[\underline{n}^{(0)}, \overline{n}^{(0)}]$: Walley (1991, §5.4.3) Walter & Augustin (2009)

no conflict:

prior $n^{(0)} \in [4, 8]$, $y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75

$$y^{(n)} \in [0.73, 0.77]$$

prior-data conflict:

prior $n^{(0)} \in [4, 8]$, $y^{(0)} \in [0.2, 0.3]$ data s/n = 16/16 = 1

$$\gamma^{(n)} \in [0.73, 0.86]$$

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Model Discussion

• Easy to handle, generally favourable inference properties, e.g.: $n \rightarrow \infty$

Model Discussion

► Easy to handle, generally favourable inference properties, e.g.: $n \to \infty \implies y^{(n)}$ stretch in $\to 0$

Model Discussion

► Easy to handle, generally favourable inference properties, e.g.: $n \to \infty \implies y^{(n)}$ stretch in $\to 0 \implies$ precise inferences

Model Discussion

- ► Easy to handle, generally favourable inference properties, e.g.: $n \to \infty \implies y^{(n)}$ stretch in $\rightarrow 0 \implies$ precise inferences
- Set shape is crucial modeling choice: trade-off between model complexity and model behaviour

Model Discussion

Model Discussion

- Easy to handle, generally favourable inference properties, e.g.: $n \to \infty \implies y^{(n)}$ stretch in $\rightarrow 0 \implies$ precise inferences
- Set shape is crucial modeling choice: trade-off between model complexity and model behaviour
- $= n^{(0)} \times [y^{(0)}, \overline{y}^{(0)}]$ (Walley 1996; Quaghebeur & de Cooman 2005): $= n^{(n)} \times [y^{(n)}, \overline{y}^{(n)}] \implies$ optimise over $[y^{(n)}, \overline{y}^{(n)}]$ only,

but no prior-data conflict sensitivity

Model Discussion

- ► Easy to handle, generally favourable inference properties, e.g.: $n \to \infty \implies y^{(n)}$ stretch in $\rightarrow 0 \implies$ precise inferences
- Set shape is crucial modeling choice: trade-off between model complexity and model behaviour
- ► = $n^{(0)} \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ (Walley 1996; Quaghebeur & de Cooman 2005): = $n^{(n)} \times [\underline{y}^{(n)}, \overline{y}^{(n)}]$ → optimise over $[\underline{y}^{(n)}, \overline{y}^{(n)}]$ only, but no prior-data conflict sensitivity

 $= [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ (Walley 1991; Walter & Augustin 2009): have non-trivial forms (banana / spotlight), but prior-data conflict sensitivity and closed form for min / max $\underline{y}^{(n)}$ over implementation: **R** package luck

Model Discussion

- ► Easy to handle, generally favourable inference properties, e.g.: $n \to \infty \implies y^{(n)}$ stretch in $\rightarrow 0 \implies$ precise inferences
- Set shape is crucial modeling choice: trade-off between model complexity and model behaviour
- ► = $n^{(0)} \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ (Walley 1996; Quaghebeur & de Cooman 2005): = $n^{(n)} \times [\underline{y}^{(n)}, \overline{y}^{(n)}]$ → optimise over $[\underline{y}^{(n)}, \overline{y}^{(n)}]$ only, but no prior-data conflict sensitivity
- $= [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ (Walley 1991; Walter & Augustin 2009): have non-trivial forms (banana / spotlight), but prior-data conflict sensitivity and closed form for min / max $y^{(n)}$ over implementation: **R** package luck
- Other set shapes are possible, but may be more difficult to handle

Why Generalise Bayesian Inference? Sets of Priors Model Discussion

Parameter Set Shape for Strong Prior-Data Agreement

Common-Cause Failures Conclusion

Common-Cause Failures

Source: Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Fukushima_I_by_Digital_Globe.jpg

Common-Cause Failures Conclusion

Common-Cause Failures

common-cause failure

simultaneous failure of several redundant components due to a common or shared root cause (Høyland & Rausand, 1994)

Source: Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Fukushima_I_by_Digital_Globe.jpg 🖉

Common-Cause Failures Conclusion

Common-Cause Failures

common-cause failure

simultaneous failure of several redundant components due to a common or shared root cause (Høyland & Rausand, 1994)

Source: Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Fukushima_I_by_Digital=Globe.jpg 🧠 🔍 🗠

Conclusion

- Conjugate priors are a convenient tool for Bayesian inference but there are some pitfalls
 - Hyperparameters $n^{(0)}$, $y^{(0)}$ are easy to interpret and elicit
 - Averaging property makes calculations simple, but leads to inadequate model behaviour in case of prior-data conflict

Conclusion

- Conjugate priors are a convenient tool for Bayesian inference but there are some pitfalls
 - Hyperparameters $n^{(0)}$, $y^{(0)}$ are easy to interpret and elicit
 - Averaging property makes calculations simple, but leads to inadequate model behaviour in case of prior-data conflict

Sets of conjugate priors maintain advantages & mitigate issues

- Hyperparameter set shape is important
- ► Reasonable choice: rectangular $= [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ (Walter & Augustin 2009: generalised iLUCK-models, luck)
- Bounds for hyperparameters are easy to interpret and elicit
- Additional imprecison in case of prior-data conflict leads to cautious inferences if, and only if, caution is needed
- Shape for more precision in case of strong prior-data agreement is in development (joint work with Frank Coolen and Mik Bickis)

ヘロト ヘヨト ヘヨト

References

- Evans, M. and H. Moshonov (2006). "Checking for Prior-Data Conflict". In: *Bayesian Analysis* 1, pp. 893–914.
- Høyland, Arnljot and Marvin Rausand (1994). System reliability theory: models and statistical methods. A Wiley interscience publication. New York, NY: Wiley. ISBN: 0-471-59397-4.
- Quaeghebeur, E. and G. de Cooman (2005). "Imprecise probability models for inference in exponential families". In: *ISIPTA '05*. Ed. by F. Cozman, R. Nau, and T. Seidenfeld. Manno: SIPTA, pp. 287–296.
- Troffaes, Matthias, Gero Walter, and Dana Kelly (2013). A Robust Bayesian Approach to Modelling Epistemic Uncertainty in Common-Cause Failure Models. Preprint available at http://arxiv.org/abs/1301.0533. Accepted for publication at: Reliability Engineering & System Safety.
- Walley, Peter (1991). *Statistical Reasoning with Imprecise Probabilities*. London: Chapman and Hall. ISBN: 0-412-28660-2.
- Walley, Peter (1996). "Inferences from multinomial data: Learning about a bag of marbles". In: *Journal of the Royal Statistical Society, Series B* 58.1, pp. 3–34.
- Walter, Gero and Thomas Augustin (2009). "Imprecision and Prior-data Conflict in Generalized Bayesian Inference". In: *Journal of Statistical Theory and Practice* 3, pp. 255–271.
- Walter, Gero and Norbert Krautenbacher (2013). luck: R package for Generalized
 - *iLUCK-models*. URL: http://luck.r-forge.r-project.org/.

イロト イポト イヨト イヨト

-