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Outline

1. Common-cause failure modelling
(joint work with Matthias Troffaes and Dana Kelly)

2. Generalised Bayesian inference with sets of priors
(joint work with Thomas Augustin)

3. Prior-data conflict and Strong prior-data agreement
(joint work with Thomas Augustin and Frank Coolen)
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Source: Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Fukushima_I_by_Digital_Globe.jpg

Source: http://www.diakont.com/solutions/nuclear-energy/
plant-systems/diesel-generator-control-systems/
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Common-Cause Failures
I All 12 generators (for 6 reactors) at Fukushima Daiichi

were not available due to flooding of machine rooms
(Tsunami caused by Tōhoku earthquake)

common-cause failure
simultaneous failure of several redundant components
due to a common or shared root cause (Høyland & Rausand, 1994)

I Reliability of redundant systems
I Usually 2 – 4 emergency diesel generators per reactor
I Sufficient cooling of core if one generator works
I Redundant components may not fail independently:

common-cause failure
I Must include common-cause failures

in overall system reliability analysis
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Common-Cause Failure Modelling

Above: CDC, http://phil.cdc.gov/phil/ ID 1194

Right: Wikimedia Commons,
http://commons.wikimedia.org/wiki/File:Graphic_TMI-2_Core_End-State_Configuration.png
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Alpha-Factor Model: Definition
Alpha-Factor Model
Multinomial distribution M(n | α) for common-cause failures
in a k -component system

p(n | α) =

k∏
j=1

α
nj

j

where
I alpha-factor αj B probability of j of the k components

failing due to a common cause
given that failure occurs

I failure count nj B corresponding number of failures observed
I n denotes (n1, . . . ,nk ) and α denotes (α1, . . . , αk )

(the model actually serves to estimate failure rates,
but the above is all what matters in this talk)
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Alpha-Factor Model: Parameter Estimation
The Good News
attractive feature of this model:
α can be estimated directly from data, e.g. MLE:

αj =
nj

n
, where

∑n
j=1 nj = n

The Bad News
I typically, for j ≥ 2, the nj are very low

with zero being quite common for larger j
I zero counts = flat likelihoods

standard techniques such as MLE can struggle
to produce sensible inferences for this problem

I need to rely on epistemic information
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Bayesian Analysis: Dirichlet Prior
α considered as uncertain parameter on which we put. . .

Dirichlet Distribution (→ Dirichlet-Multinomial Model)

p(α | n(0),y(0)) ∝

k∏
j=1

α
n(0)y(0)

j −1

j
where (n(0),y(0))
are hyperparameters

n(0) > 0

y(0)
∈ ∆ =

{
(y(0)

1 , . . . , y(0)

k ) : y(0)

1 ≥ 0, . . . , y(0)

k ≥ 0,
k∑

j=1

y(0)

j = 1
}

Interpretation

I y(0) = prior expectation of α, i.e., a prior guess for nj
n , j = 1, . . . ,n

I n(0) = determines spread and learning speed (see next slide)

Gero Walter Bayesian Inference with Sets of Conjugate Priors 8/34



Common-cause Failure Modelling
Bayesian Inference with Sets of Priors

Prior-Data Conflict

Alpha-Factor Model
Bayesian Analysis
Imprecise Dirichlet Model

Bayesian Analysis: Dirichlet Prior
α considered as uncertain parameter on which we put. . .

Dirichlet Distribution (→ Dirichlet-Multinomial Model)

p(α | n(0),y(0)) ∝

k∏
j=1

α
n(0)y(0)

j −1

j
where (n(0),y(0))
are hyperparameters

n(0) > 0

y(0)
∈ ∆ =

{
(y(0)

1 , . . . , y(0)

k ) : y(0)

1 ≥ 0, . . . , y(0)

k ≥ 0,
k∑

j=1

y(0)

j = 1
}

Interpretation

I y(0) = prior expectation of α, i.e., a prior guess for nj
n , j = 1, . . . ,n

I n(0) = determines spread and learning speed (see next slide)

Gero Walter Bayesian Inference with Sets of Conjugate Priors 8/34



Common-cause Failure Modelling
Bayesian Inference with Sets of Priors

Prior-Data Conflict

Alpha-Factor Model
Bayesian Analysis
Imprecise Dirichlet Model

Bayesian Analysis: Dirichlet Posterior
I posterior density for α is again Dirichlet I conjugacy

update parameters: n(0)
→ n(n), y(0)

→ y(n)

p(α | n(0),y(0),n) = p(α | n(n),y(n)) ∝

k∏
j=1

α
n(n)y(n)

j −1

j

I posterior expectation of αj :

E[αj | n(0),y(0),n] = E[αj | n(n),y(n)] =

∫
∆

αjp(α | n(0),y(0),n) dα

= y(n)

j =
n(0)

n(0) + n
· y(0)

j +
n

n(0) + n
·

nj

n

we will focus on E[αj | n(n),y(n)]
(in a decision context, this expectation would typically end up

in expressions for expected utility)
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Example: Prior and Data

(taken from Kelly & Atwood, 2011)

Example
Consider a system with four redundant components (k = 4).
The analyst specifies the following prior expectation µspec,j for each αj :

µspec,1 = 0.950 µspec,2 = 0.030 µspec,3 = 0.015 µspec,4 = 0.005

We have 36 observations, in which 35 showed one component failing,
and 1 showed two components failing:

n1 = 35 n2 = 1 n3 = 0 n4 = 0
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Example: Non-Informative Priors
large variation in posterior under different non-informative priors
I with constrained maximum entropy prior

(Atwood, 1996; Kelly & Atwood, 2011):

E[α1 | n(n),y(n)] = 0.967 E[α2 | n(n),y(n)] = 0.028

E[α3 | n(n),y(n)] = 0.003 E[α4 | n(n),y(n)] = 0.001

I with uniform prior y(0)

j = 0.25 and n(0) = 4:

E[α1 | n(n),y(n)] = 0.9 E[α2 | n(n),y(n)] = 0.05

E[α3 | n(n),y(n)] = 0.025 E[α4 | n(n),y(n)] = 0.025

I with Jeffrey’s prior y(0)

j = 0.25 and n(0) = 2:

E[α1 | n(n),y(n)] = 0.9342 E[α2 | n(n),y(n)] = 0.0395

E[α3 | n(n),y(n)] = 0.0132 E[α4 | n(n),y(n)] = 0.0132
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Imprecise Dirichlet Model: Definition
Troffaes, Walter & Kelly (2012): model vague prior info more cautiously

Imprecise Dirichlet Model (IDM) for Common-Cause Failure
use a set of hyperparameters (Walley 1991, 1996):

IΠ(0) =
{
(n(0),y(0)) : n(0)

∈ [n(0),n(0)
], y(0)

∈ ∆, y(0)

j ∈ [y(0)

j
, y(0)

j ]
}

Interpretation
I we are doing a sensitivity analysis (á la robust Bayes)

over (n(0),y(0)) ∈ IΠ(0)

I we take a set of priors based on IΠ(0)

as model for prior information (details later)

Analyst has to specify
bounds [n(0),n(0)

] and bounds [y(0)

j , y(0)

j ] for each j ∈ {1, . . . , k }
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Imprecise Dirichlet Model: Elicitation
I [y(0)

j , y(0)

j ]: Cautious interpretation of prior specifications µspec,j :

[y(0)

1
, y(0)

1 ] = [0.950,1] [y(0)

2
, y(0)

2 ] = [0,0.030]

[y(0)

3
, y(0)

3 ] = [0,0.015] [y(0)

4
, y(0)

4 ] = [0,0.005]

I [n(0),n(0)
]: Good (1965):

reason about posterior expectations for hypothetical data

n(0) = number of one-component failures required
to reduce the upper probabilities of multi-component failure by half

n(0) = number of multi-component failures required
to reduce the lower probability of one-component failure by half
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Imprecise Dirichlet Model: Elicitation

n(0) = number of one-component failures required
to reduce the upper probabilities of multi-component failure by half

n(0) = number of multi-component failures required
to reduce the lower probability of one-component failure by half

Reasonable values in example:
I n(0) = 1: immediate multi-component failure
I keen to reduce lower probability for one-component failure

I n(0)
= 10: after observing 10 one-component failures

I halve upper probabilities of multi-component failures
Difference between n(0) and n(0) reflects a level of caution:
The rate at which we reduce upper probabilities
is less than the rate at which we reduce lower probabilities
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Imprecise Dirichlet Model: Inference
prior bounds + likelihood→ posterior bounds

with y(0)

j = µspec,j : with bounds as earlier:

j E[αj | IΠ(0),n] E[αj | IΠ(0),n] E[αj | IΠ(0),n] E[αj | IΠ(0),n]

1 0.967 0.972 0.967 0.978
2 0.0278 0.0283 0.0270 0.0283
3 0.00041 0.00326 0 0.00326
4 0.00014 0.00109 0 0.00109

I Bounds, rather than precise values, are desirable
due to inferences being strongly sensitive to the prior
particularly when faced with zero counts

I Simple ways to elicit the parameters of the model
by reasoning on hypothetical data

I Is it possible to generalise this method to other problems?
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Canonical Conjugate Priors
The multinomial is an example for a canonical exponential family

(x1, . . . , xn) = x iid
∼ canonical exponential family

p(x | θ) ∝ exp
{
〈ψ, τ(x)〉 − nb(ψ)

} [
ψ transformation of θ

]
(includes Binomial, Multinomial, Normal, Poisson, Exponential, . . . )

I conjugate prior: p(ψ | n(0), y(0)) ∝ exp
{
n(0)

[
〈ψ, y(0)

〉 − b(ψ)
]}

I (conjugate) posterior: p(ψ | n(0), y(0),x) ∝ exp
{
n(n)

[
〈ψ, y(n)

〉 − b(ψ)
]}

where y(n) =
n(0)

n(0) + n
· y(0) +

n
n(0) + n

·
τ(x)

n
and n(n) = n(0) + n
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Canonical Conjugate Priors

I (conjugate) posterior: p(ψ | n(n), y(n)) ∝ exp
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n(n)
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〉 − b(ψ)
]}

where y(n) =
n(0)

n(0) + n
· y(0) +

n
n(0) + n

·
τ(x)

n
and n(n) = n(0) + n

Interpretation
I n(0) = determines spread and learning speed
I y(0) = prior expectation of τ(x)/n

Example: Scaled Normal Data
Data : x | µ ∼ N(µ,1)

conjugate prior: µ | n(0), y(0)
∼ N(y(0),1/n(0))

posterior: µ | n(n), y(n)
∼ N(y(n),1/n(n)) (τ(x)

n = x̄)
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Bayesian Inference with Sets of Priors

Standard Bayesian inference procedure
prior + likelihood = posterior

using Bayes’ Rule
All inferences are based on the posterior
(e.g., point estimate = E[ψ | n(n), y(n)])

Let hyperparameters (n(0), y(0)) vary in a set IΠ(0) I set of priors

Generalised Bayesian inference procedure
set of priors + likelihood = set of posteriors

All inferences are based on the set of posteriors
Coherence (consistency of inferences) ensured by using
Generalised Bayes’ Rule (GBR, Walley 1991)
= element-wise application of Bayes’ Rule
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Set of Priors can be Convex
Convex Set of Priors

M
(0) = conv

({
p(ψ | n(0),y(0)) : (n(0),y(0)) ∈ IΠ(0)

})
M

(0) = finite convex mixtures of canonical conjugate priors defined by IΠ(0)

Updating & mixture commute I set of posteriors can be written as. . .

Convex Set of Posteriors

M
(n) = conv

({
p(ψ | n(n),y(n)) : (n(n),y(n)) ∈ IΠ(n)

})
where IΠ(n) =

{
(n(n),y(n)) : (n(0),y(0)) ∈ IΠ(0)

}
.

M
(n) = finite convex mixtures of canonical conjugate posteriors

defined by set of updated hyperparameters IΠ(n)

Convex sets make the procedure very general (mixture distributions),
but useful only for inferences that are linear in the posteriors
(expectations: yes, variances: no)
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Generalised Bayesian Inference Procedure

single prior (n(0), y(0)) I set of priorsM(0) (defined via IΠ(0))

E[ψ | n(0), y(0),x] I
[
E[ψ | IΠ(0),x],E[ψ | IΠ(0),x]

]
P(ψ ∈ A | n(0), y(0),x) I

[
P[ψ ∈ A | IΠ(0),x],P[ψ ∈ A | IΠ(0),x]

]
Lower/upper posterior expectation by min/max over set of posteriors

Interpretation
Shorter intervals J I more precise probability statements

Lottery A
Number of winning tickets:

exactly known as 5 out of 100
I P(win) = 5/100

Lottery B
Number of winning tickets:

not exactly known, supposedly
between 1 and 7 out of 100
I P(win) = [1/100, 7/100]
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Generalised Bayesian Inference Procedure

Shorter intervals J I more precise probability statements

I larger n(0) values as compared to n I larger IΠ(n)

I more vague inferences
(more weight on imprecise priorM(0) leads to more imprecise
posteriorM(n))

I larger n as compared to (range of) n(0) I smaller IΠ(n)

I more precise inferences

I n→∞ I y(n) values in IΠ(n)
→

τ(x)
n I ‘Bayesian consistency’

I larger range of y(0) in IΠ(0) I larger range of y(n) in IΠ(n)

I more vague inferences
(more imprecise priorM(0) leads to more impreciseM(n))
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Generalised Bayesian Inference Procedure

I Hyperparameter set IΠ(0) defines set of priorsM(0)

I Hyperparameter set IΠ(n) defines set of posteriorsM(n)

I IΠ(0)
→ IΠ(n) is easy: n(n) = n(0) + n, y(n) = n(0)

n(0)+n y(0) + n
n(0)+n

τ(x)
n

I Quantities linear in p(ψ | n(n),y(n)) (e.g., E[g(ψ) | n(n),y(n)]):
I bounds attained at “pure” posteriors p(ψ | n(n),y(n))
I straighforward to calculate: optimise over IΠ(n) only

I Often, optimising over (n(n),y(n)) ∈ IΠ(n) is also easy:
posterior ‘guess’ for τ(x)

n (think: x̄) = y(n)

I closed form solution given IΠ(n) has ‘nice’ shape
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I Hyperparameter set IΠ(n) defines set of posteriorsM(n)

I IΠ(0)
→ IΠ(n) is easy: n(n) = n(0) + n, y(n) = n(0)

n(0)+n y(0) + n
n(0)+n

τ(x)
n

I Quantities linear in p(ψ | n(n),y(n)) (e.g., E[g(ψ) | n(n),y(n)]):
I bounds attained at “pure” posteriors p(ψ | n(n),y(n))
I straighforward to calculate: optimise over IΠ(n) only

I Often, optimising over (n(n),y(n)) ∈ IΠ(n) is also easy:
posterior ‘guess’ for τ(x)

n (think: x̄) = y(n)

I closed form solution given IΠ(n) has ‘nice’ shape
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Parameter Set Shapes
I Shape of IΠ(0) influences shape of IΠ(n)

I Shape of IΠ(n) influences model behaviour
I shape of IΠ(0) is a crucial modelling choice

I IΠ(0) = [n(0),n(0)
] × [y(0), y(0)

] (rectangle) is very easy to elicit
and gives good model behaviour for prior-data conflict

Prior-Data Conflict
I informative prior beliefs and trusted data

(sampling model correct, no outliers, etc.) are in conflict
I “[. . . ] the prior [places] its mass primarily on distributions in the

sampling model for which the observed data is surprising”
(Evans & Moshonov, 2006)

I there are not enough data to overrule the prior
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Prior-Data Conflict: Example
I Bernoulli observations: 0/1 observations (team wins no/yes)

I given: a set of observations (team won 12 out of 16 matches)
I additional to observations, we have strong prior information

(we are convinced that P(win) should be around 0.75)
I we are, e.g., interested in (predictive) probability P that team wins

in the next match

Beta-Binomial Model
Data : s | p ∼ Binom(p)

conjugate prior: p | n(0), y(0)
∼ Beta(n(0), y(0))

posterior: p | n(n), y(n)
∼ Beta(n(n), y(n)) (τ(x)

n = s
n )

where s = number of wins in the n matches observed
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Beta-Binomial Model

Beta-Binomial Model
Data : s | p ∼ Binom(p)

conjugate prior: p | n(0), y(0)
∼ Beta(n(0), y(0))

posterior: p | n(n), y(n)
∼ Beta(n(n), y(n)) (τ(x)

n = s
n )

P = E[p | n(n), y(n)] = y(n) =
n(0)

n(0) + n
· y(0) +

n
n(0) + n

·
s
n

n(n) = n(0) + n Var(p | n(n), y(n)) =
y(n)(1 − y(n))

n(n) + 1
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Imprecise BBM with n(0) fixed = IDM (Walley 1996)
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Parameter Set Shapes: Discussion
I IΠ(0) = n(0)

× [y(0), y(0)
]:

IDM (Walley 1996), Quaghebeur & de Cooman (2005)
I posterior parameter set has same form IΠ(n) = n(n)

× [y(n), y(n)
]

I optimise over [y(n), y(n)
] only

I no prior-data conflict reaction: same imprecision as without conflict
(just like precise priors)

I IΠ(0) = [n(0),n(0)
] × [y(0), y(0)

]: Walley (1991, §5.4.3),
generalized iLUCK-models (Walter & Augustin 2009)

I still simple to elicit, allows flexible weighing of prior and data
I additional imprecision in case of prior-data conflict
I more cautious inferences

I IΠ(n) have non-trivial forms (banana / spotlight)
I however, closed form for min /max y(n) over IΠ(n)

I general optimisation over IΠ(n) more difficult, but doable
I R package luck: do optimisation over IΠ(0) actually
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Parameter Set Shapes: Discussion

I Need a range of n(0) values for prior-data conflict reaction

I Other set shapes are possible, but may be more difficult to elicit
I Prior information may be such that range of y(0) changes with n(0)

(or vice versa)
I Near-ignorance priors: IΠ(0) such that prior inferences are

vacuous, but posterior inferences are informative
I IDM (Walley 1996): range of y(0)

j = (0,1) ∀j
I Benavoli & Zaffalon (2012): range of y(0) = (−∞,+∞)

while n(0) decreasing with y(0)

(to avoid n(0)
|y(0)
| = ∞, i.e. vacuous posterior inferences)
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Parameter Set Shapes: Outlook
Work in progress (joint work with Frank Coolen):
parameter set shape enabling. . .
I additional imprecision in case of prior-data conflict (as before)
I less imprecision for strong prior-data agreement

via a different parametrisation of priors suggested by Mik Bickis

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0)

y(0
)

Gero Walter Bayesian Inference with Sets of Conjugate Priors 32/34



Common-cause Failure Modelling
Bayesian Inference with Sets of Priors

Prior-Data Conflict

Example
Parameter Set Shapes
Conclusion

Parameter Set Shapes: Outlook
Work in progress (joint work with Frank Coolen):
parameter set shape enabling. . .
I additional imprecision in case of prior-data conflict (as before)
I less imprecision for strong prior-data agreement

via a different parametrisation of priors suggested by Mik Bickis

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0)

y(0
)

Gero Walter Bayesian Inference with Sets of Conjugate Priors 32/34



Common-cause Failure Modelling
Bayesian Inference with Sets of Priors

Prior-Data Conflict

Example
Parameter Set Shapes
Conclusion

Conclusion

I Conjugate priors are a convenient tool for Bayesian inference
but there are some pitfalls

I Hyperparameters are easy to interpret and elicit
I Averaging property makes calculations simple,

but inadequate model behaviour in case of prior-data conflict

I Sets of conjugate priors maintain advantages & mitigate issues
I Hyperparameter set shape is important
I Reasonable choice: rectangular IΠ(0) = [n(0),n(0)

] × [y(0), y(0)
]

I Bounds for hyperparameters easy to interpret and elicit
I Additional imprecison in case of prior-data conflict

leads to cautious inferences if, and only if, caution is needed
I Shape for less imprecision in case of strong prior-data agreement is

in development
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