

The Effect of Prior-Data Conflict in Bayesian Linear Regression

Gero Walter

Institut für Statistik Ludwig-Maximilians-Universität München

April 14th, 2010

 \sim \rightarrow \equiv \rightarrow \rightarrow

 \leftarrow

- \blacktriangleright Prior-Data Conflict
	- \triangleright Simple Example: Dirichlet-Multinomial Model
	- \blacktriangleright Conjugate Priors
- \blacktriangleright Bayesian Linear Regression
	- ▶ Standard Conjugate Prior (SCP)
	- \triangleright Canonically Constructed Conjugate Prior (CCCP)
- \blacktriangleright Generalized Bayesian Inference
	- ^I Basic Idea
	- \blacktriangleright Generalized iLUCK-models
	- Outlook & Summary

Prior-Data Conflict

Prior-Data Conflict $\hat{=}$ situation in which...

- \blacktriangleright ... informative prior beliefs and trusted data (sampling model correct, no outliers, etc.) are in conflict
- \blacktriangleright "... the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising." (Evans & Moshonov, 2006)

 $x = x - x$

[Simple Example: Dirichlet-Multinomial-Model](#page-5-0)

つへへ

Simple Example: Dirichlet-Multinomial-Model

$$
\mathbb{E}[\theta_j] = \frac{\alpha_j}{\sum \alpha_i} \qquad \qquad \mathbb{V}(\theta_j) = \frac{\mathbb{E}[\theta_j](1 - \mathbb{E}[\theta_j])}{\sum \alpha_i + 1}
$$

→ 伊 ▶ → 君 ▶ → 君

[Simple Example: Dirichlet-Multinomial-Model](#page-5-0) [Conjugate Priors](#page-8-0)

つへへ

Simple Example: Dirichlet-Multinomial-Model

→ 伊 ▶ → 君 ▶ → 君

Simple Example: Dirichlet-Multinomial-Model

[Simple Example: Dirichlet-Multinomial-Model](#page-3-0) [Conjugate Priors](#page-8-0)

つへへ

Simple Example: Dirichlet-Multinomial-Model

Simple Example: Dirichlet-Multinomial-Model

イロン イ押ン イヨン イヨン

[Simple Example: Dirichlet-Multinomial-Model](#page-3-0) [Conjugate Priors](#page-10-0)

つくい

Conjugate Priors

Weighted average structure is underneath *all common* conjugate priors for exponential family sampling distributions!

 $X\overset{iid}{\sim}$ linear, canonical exponential family, i.e.

 $p(\mathsf{x} \mid \theta) \propto \exp\left\{ \langle \psi, \tau(\mathsf{x}) \rangle - \mathsf{n} \mathsf{b}(\psi) \right\}$ $\left[\psi \right]$ transformation of θ

Conjugate Priors

Weighted average structure is underneath *all common* conjugate priors for exponential family sampling distributions!

 $X\overset{iid}{\sim}$ linear, canonical exponential family, i.e.

 $p(\mathsf{x} \mid \theta) \propto \exp\left\{ \langle \psi, \tau(\mathsf{x}) \rangle - \mathsf{n} \mathsf{b}(\psi) \right\}$ $\left[\psi \right]$ transformation of θ

 \rightarrow conjugate prior:

 $p(\theta) \propto \exp\left\{ \frac{n^{(0)}[\langle \psi, y^{(0)} \rangle - \mathsf{b}(\psi)] \right\}$

 \mathcal{A} and \mathcal{A} in the set of \mathcal{B}

[Simple Example: Dirichlet-Multinomial-Model](#page-3-0) [Conjugate Priors](#page-8-0)

Conjugate Priors

Weighted average structure is underneath *all common* conjugate priors for exponential family sampling distributions!

 $X\overset{iid}{\sim}$ linear, canonical exponential family, i.e.

 $p(\mathsf{x} \mid \theta) \propto \exp\left\{ \langle \psi, \tau(\mathsf{x}) \rangle - \mathsf{n} \mathsf{b}(\psi) \right\}$ $\left[\psi \right]$ transformation of θ

 \rightarrow conjugate prior:

$$
p(\theta) \propto \exp\left\{n^{(0)}\big[\langle \psi, y^{(0)} \rangle - \mathbf{b}(\psi)\big]\right\}
$$

 \rightarrow (conjugate) posterior:

$$
p(\theta \mid \mathsf{x}) \propto \exp\left\{ \mathsf{n}^{(1)}\big[\langle \psi, \mathsf{y}^{(1)} \rangle - \mathsf{b}(\psi) \big] \right\},
$$

where
$$
y^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{1}{n}\tau(x)
$$
 and $n^{(1)} = n^{(0)} + n$.
\n
\n Gero Walter Prior-Data Conflict in Bayesian Linear Regression 6/20

 QQ

Bayesian Linear Regression

Are posterior inferences in Bayesian linear regression influenced by prior-data conflict?

$$
z_i = x_i^{\mathsf{T}} \beta + \varepsilon_i \quad [x_i \in \mathbb{R}^p, \ \beta \in \mathbb{R}^p]
$$

$$
z = \mathbf{X} \beta + \varepsilon
$$

 \mathcal{A} and \mathcal{A} in the set of \mathcal{A}

 \leftarrow

 QQ

Bayesian Linear Regression

Are posterior inferences in Bayesian linear regression influenced by prior-data conflict?

$$
z_i = x_i^T \beta + \varepsilon_i \quad [x_i \in \mathbb{R}^p, \ \beta \in \mathbb{R}^p]
$$

\n
$$
z = \mathbf{X} \beta + \varepsilon \qquad \longrightarrow \ z \mid \beta, \sigma^2 \sim N(\mathbf{X} \beta, \sigma^2 \mathbf{I})
$$

 \mathcal{A} and \mathcal{A} in the set of \mathcal{A}

 \leftarrow

Bayesian Linear Regression

Are posterior inferences in Bayesian linear regression influenced by prior-data conflict?

$$
z_i = x_i^T \beta + \varepsilon_i \quad [x_i \in \mathbb{R}^p, \ \beta \in \mathbb{R}^p]
$$

\n
$$
z = \mathbf{X} \beta + \varepsilon \qquad \longrightarrow \ z \mid \beta, \sigma^2 \sim N(\mathbf{X} \beta, \sigma^2 \mathbf{I})
$$

Prior on (β, σ^2) : generally taken as $p(\beta, \sigma^2) = p(\beta | \sigma^2)p(\sigma^2)$.

- \triangleright SCP: standard conjugate prior model (e.g., O'Hagan 1994)
- \triangleright CCCP: "canonically constructed conjugate prior"

Standard Conjugate Prior (SCP)

 $\beta \mid \sigma^{2} \sim \mathsf{N}_{\bm{\rho}}(m^{(0)},\, \sigma^{2}{\bf M}^{(0)}) \,\,\,\,\,$ (multivariate Normal)

 $\sigma^2 \sim$ IG ($a^{(0)},\ b$ (0) \qquad (Inverse Gamma, e.g. $p(\sigma^2) \propto \frac{e^{-\frac{b^{(0)}}{\sigma^2}}}{(1+e^{-\sigma^2})^2}$ σ^2 $\frac{1}{(\sigma^2)^{a^{(0)}+1}}$

Standard Conjugate Prior (SCP)

 $\beta \mid \sigma^{2} \sim \mathsf{N}_{\bm{\rho}}(m^{(0)},\, \sigma^{2}{\bf M}^{(0)}) \,\,\,\,\,$ (multivariate Normal)

 $\sigma^2 \sim$ IG ($a^{(0)},\ b$ (0) \qquad (Inverse Gamma, e.g. $p(\sigma^2) \propto \frac{e^{-\frac{b^{(0)}}{\sigma^2}}}{(1+e^{-\sigma^2})^2}$ σ^2 $\frac{1}{(\sigma^2)^{a^{(0)}+1}}$

$$
m^{(1)} = (M^{(0)^{-1}} + X^{T}X)^{-1} (M^{(0)^{-1}}m^{(0)} + X^{T}Z)
$$

\n
$$
M^{(1)} = (M^{(0)^{-1}} + X^{T}X)^{-1}
$$

\n
$$
a^{(1)} = a^{(0)} + \frac{n}{2}
$$

\n
$$
b^{(1)} = b^{(0)} + \frac{1}{2} (Z^{T}Z + m^{(0)^{T}}M^{(0)^{-1}}m^{(0)} - m^{(1)^{T}}M^{(1)^{-1}}m^{(1)})
$$

 \sim

SCP: Update step for $\beta \mid \sigma^2$

$$
\mathbb{E}[\beta \mid \sigma^2] = m^{(0)}\n\mathbb{E}[\beta \mid \sigma^2, z] = m^{(1)} = (\mathbf{I} - \mathbf{A}) m^{(0)} + \mathbf{A} \hat{\beta}^{LS}\nwhere $\mathbf{A} = (\mathbf{M}^{(0)}^{-1} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X}$
$$

イロト イ伊 ト イヨ ト イヨ

SCP: Update step for $\beta \mid \sigma^2$

$$
\mathbb{E}[\beta | \sigma^2] = m^{(0)}
$$
\n
$$
\mathbb{E}[\beta | \sigma^2, z] = m^{(1)} = (\mathbf{I} - \mathbf{A}) m^{(0)} + \mathbf{A} \hat{\beta}^{LS}
$$
\nwhere $\mathbf{A} = (\mathbf{M}^{(0)-1} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X}$
\n
$$
\mathbb{V}(\beta | \sigma^2) = \sigma^2 \mathbf{M}^{(0)}
$$
\n
$$
\mathbb{V}(\beta | \sigma^2, z) = \sigma^2 \mathbf{M}^{(1)} = \sigma^2 (\mathbf{M}^{(0)-1} + \mathbf{X}^T \mathbf{X})^{-1}
$$
\n
$$
\mathbb{V}(\beta_j | \sigma^2, z) < \mathbb{V}(\beta_j | \sigma^2)
$$

イロト イ伊 ト イヨ ト イヨ

SCP: Update step for $\beta \mid \sigma^2$

$$
\mathbb{E}[\beta | \sigma^2] = m^{(0)}
$$
\n
$$
\mathbb{E}[\beta | \sigma^2, z] = m^{(1)} = (\mathbf{I} - \mathbf{A}) m^{(0)} + \mathbf{A} \hat{\beta}^{LS}
$$
\nwhere $\mathbf{A} = (\mathbf{M}^{(0)}^{-1} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X}$
\n
$$
\mathbb{V}(\beta | \sigma^2) = \sigma^2 \mathbf{M}^{(0)}
$$
\n
$$
\mathbb{V}(\beta | \sigma^2, z) = \sigma^2 \mathbf{M}^{(1)} = \sigma^2 \left(\mathbf{M}^{(0)}^{-1} + \mathbf{X}^T \mathbf{X}\right)^{-1}
$$
\n
$$
\mathbb{V}(\beta_j | \sigma^2, z) < \mathbb{V}(\beta_j | \sigma^2)
$$
\nActually of interest:

 $\mathbb{E}[\beta] = m^{(0)}, \qquad \mathbb{V}(\beta) = \frac{b^{(0)}}{b^{(0)}}$ $\frac{D^{(1)}}{a^{(0)}-1}$ M⁽⁰⁾ = E[σ^2] M⁽⁰⁾ $\mathbb{E}[\beta | z] = m^{(1)}, \ \ \mathbb{V}(\beta | z) = \frac{b^{(1)}}{4}$ $\frac{D^{(1)}}{a^{(1)}-1}$ M $^{(1)} = \mathbb{E}[\sigma^2 \mid z]$ M $^{(1)}$ イロト イ伊 ト イヨ ト イヨ

[Standard Conjugate Prior \(SCP\)](#page-14-0)

 Ω

SCP: Update step for σ^2

$$
\mathbb{E}[\sigma^2 \mid z] = \frac{2a^{(0)} - 2}{2a^{(0)} + n - 2} \mathbb{E}[\sigma^2] + \frac{n - p}{2a^{(0)} + n - 2} \hat{\sigma}_{LS}^2 + \frac{p}{2a^{(0)} + n - 2} \hat{\sigma}_{PDC}^2
$$

- ④ 伊 ≯ ④ 重 ≯ ④ 重

SCP: Update step for σ^2

$$
\mathbb{E}[\sigma^2 \mid z] = \frac{2a^{(0)} - 2}{2a^{(0)} + n - 2} \mathbb{E}[\sigma^2] + \frac{n - p}{2a^{(0)} + n - 2} \hat{\sigma}_{LS}^2 + \frac{p}{2a^{(0)} + n - 2} \hat{\sigma}_{PDC}^2
$$

$$
\hat{\sigma}_{LS}^2 = \frac{1}{n - p} (z - \mathbf{X}\hat{\beta}^{LS})^T (z - \mathbf{X}\hat{\beta}^{LS})
$$
\n
$$
\hat{\sigma}_{PDC}^2 = \frac{1}{p} (m^{(0)} - \hat{\beta}^{LS})^T (\mathbf{M}^{(0)} + (\mathbf{X}^T \mathbf{X})^{-1})^{-1} (m^{(0)} - \hat{\beta}^{LS})
$$
\n
$$
\implies \mathbb{E}[\hat{\sigma}_{PDC}^2 | \sigma^2] = \sigma^2
$$

Weights:

▶ 2*a*⁽⁰⁾ – 2 for
$$
\mathbb{E}[\sigma^2]
$$
: think of $V(\sigma^2) = \frac{(b^{(0)})^2}{(a^{(0)}-1)^2(a^{(0)}-2)}$

► *n* – *p* for $\hat{\sigma}_{LS}^2$: usual *df* s in least-squares estimate

► p for $\hat{\sigma}_{PDC}^2$: dim (β) = number of dimensions in which prior-data conflic[t i](#page-19-0)s [p](#page-21-0)[o](#page-18-0)[s](#page-19-0)[s](#page-20-0)[ib](#page-21-0)[l](#page-13-0)[e](#page-14-0)

э

SCP: Summary

$$
\mathbb{E}[\beta \mid z] = m^{(1)}
$$

$$
\mathbb{V}(\beta \mid z) = \mathbb{E}[\sigma^2 \mid z] \cdot \mathsf{M}^{(1)}
$$

イロン イ部ン イ君ン イ君ン

[Standard Conjugate Prior \(SCP\)](#page-14-0)

 299

SCP: Summary

weighted average of prior and LS estimate

$$
\mathbb{E}[\beta \mid z] = m^{(1)} \longleftarrow
$$

$$
\mathbb{V}(\beta \mid z) = \mathbb{E}[\sigma^2 \mid z] \cdot \mathsf{M}^{(1)}
$$

イロメ イ母メ イヨメ イヨ

つくへ

SCP: Summary

may increase due to prior-data conflict (weight p)

す イヨ メ ヨ メ

 \leftarrow \Box

[Standard Conjugate Prior \(SCP\)](#page-14-0) [Canonically Constructed Conjugate Prior \(CCCP\)](#page-27-0)

 299

SCP: Summary

母→ ∢∃→

SCP: Summary

Posterior variance may increase due to prior-data conflict. But:

SCP: Summary

Posterior variance may increase due to prior-data conflict. But:

- Effect of possible increase of $\mathbb{E}[\sigma^2 | z]$ contrasted by automatic decrease of $M^{(1)}$!
- \triangleright Variance increase by the same factor for all β_i s!

イロメ イ母メ イヨメ イヨ

Canonically Constructed Conjugate Prior (CCCP) CCCP turns out as a special case of SCP:

$$
\beta \mid \sigma^2 \sim \mathrm{N}_p\left(m^{(0)}, \sigma^2 \frac{n}{\underline{n^{(0)}}} (\mathbf{X}^T \mathbf{X})^{-1}\right)
$$

$$
\sigma^2 \sim \mathrm{IG}\left(a^{(0)}, b^{(0)}\right) =: \mathrm{M}^{(0)}
$$

- ∢ 何 ▶ -∢ ヨ ▶ -∢ ヨ

Canonically Constructed Conjugate Prior (CCCP) CCCP turns out as a special case of SCP:

Canonically Constructed Conjugate Prior (CCCP) CCCP turns out as a special case of SCP:

 QQ

CCCP: Update step for σ^2

Again, for the posterior on β it holds that

 $\mathbb{E}[\beta \mid z] = m^{(1)}$ $\mathbb{V}(\beta\mid z)=\mathbb{E}[\sigma^{2}\mid z]\cdot\mathsf{M}^{(1)}$

such that the update step for $\mathbb{E}[\sigma^2]$ is of most interest:

 $\langle \oplus \rangle$ \rightarrow $\langle \oplus \rangle$ \rightarrow $\langle \oplus$

CCCP: Update step for σ^2

Again, for the posterior on β it holds that

$$
\mathbb{E}[\beta \mid z] = m^{(1)}
$$

$$
\mathbb{V}(\beta \mid z) = \mathbb{E}[\sigma^2 \mid z] \cdot \mathsf{M}^{(1)}
$$

such that the update step for $\mathbb{E}[\sigma^2]$ is of most interest:

$$
\mathbb{E}[\sigma^2 | z] = \frac{n^{(0)} + p}{n^{(0)} + n + p} \mathbb{E}[\sigma^2] + \frac{n - p}{n^{(0)} + n + p} \hat{\sigma}_{LS}^2 + \frac{p}{n^{(0)} + n + p} \hat{\sigma}_{PDC}^2
$$

$$
\hat{\sigma}_{PDC}^2 = \frac{1}{p} (m^{(0)} - \hat{\beta}^{LS})^T \frac{n^{(0)}}{n^{(0)} + n} \mathbf{X}^T \mathbf{X} (m^{(0)} - \hat{\beta}^{LS}) \qquad \left[\mathbb{E}[\cdot | \sigma^2] = \sigma^2 \right]
$$

For CCCP, two other interesting decompositions of $\mathbb{E}[\sigma^2 \mid z]$ exist.

- ④ インド キャンド キ

э

CCCP: Summary

$$
\mathbb{E}[\beta \mid z] = m^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \mathbb{E}[\beta \mid \sigma^2] + \frac{n}{n^{(0)} + n} \hat{\beta}^{LS}
$$

イロン イ母ン イヨン イヨン

CCCP: Summary

- ④ 伊 ≯ ④ 重 ≯ ④ 重

and the first

CCCP: Summary

 QQ

Generalized Bayesian Inference: Basic Idea

Use set of priors \rightarrow base inferences on set of posteriors obtained by element-wise updating

 \Box λ = λ

 $2Q$

Generalized Bayesian Inference: Basic Idea

Use set of priors \rightarrow base inferences on set of posteriors obtained by element-wise updating \rightarrow numbers become intervals, e.g.

$$
\mathbb{E}[\theta] \longrightarrow \left[\underline{\mathbb{E}}[\theta], \overline{\mathbb{E}}[\theta]\right] = \left[\min_{p \in \mathcal{M}_{\theta}} \mathbb{E}_{p}[\theta], \max_{p \in \mathcal{M}_{\theta}} \mathbb{E}_{p}[\theta]\right]
$$

$$
P(\theta \in A) \longrightarrow \left[\underline{P}(\theta \in A), \overline{P}(\theta \in A)\right] = \left[\min P_{p}(\theta \in A), \max P_{p}(\theta \in A)\right]
$$

三 ト

 299

Generalized Bayesian Inference: Basic Idea

Use set of priors \rightarrow base inferences on set of posteriors obtained by element-wise updating \rightarrow numbers become intervals, e.g.

$$
\mathbb{E}[\theta] \longrightarrow \left[\underline{\mathbb{E}}[\theta], \overline{\mathbb{E}}[\theta]\right] = \left[\min_{p \in \mathcal{M}_{\theta}} \mathbb{E}_{p}[\theta], \max_{p \in \mathcal{M}_{\theta}} \mathbb{E}_{p}[\theta]\right]
$$

$$
P(\theta \in A) \longrightarrow \left[\underline{P(\theta \in A)}, \overline{P(\theta \in A)}\right] = \left[\min P_{\rho}(\theta \in A), \max P_{\rho}(\theta \in A)\right]
$$

Shorter intervals \leftrightarrow more precise probability statements

Lottery A

Number of winning tickets: exactly known as 5 out of 100

$$
\rightarrow P(\text{win}) = 5/100
$$

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 $\rightarrow P(\text{win}) = [1/100, 7/100]$

. . *. .*

 299

 299

$$
\overline{P}(A) = 1 - \underline{P}(A^c) \qquad \qquad \overline{\mathbb{E}}[X] = -\underline{\mathbb{E}}(-X)
$$

 299

$$
\overline{P}(A) = 1 - \underline{P}(A^c) \qquad \qquad \overline{\mathbb{E}}[X] = -\underline{\mathbb{E}}(-X)
$$

 299

Generalized Bayesian Inference: Basic Idea

$$
\overline{P}(A) = 1 - \underline{P}(A^c) \qquad \qquad \overline{\mathbb{E}}[X] = -\underline{\mathbb{E}}(-X)
$$

 \rightarrow Frank Coolen (my host)

 299

$$
\overline{P}(A) = 1 - \underline{P}(A^c) \qquad \qquad \overline{\mathbb{E}}[X] = -\underline{\mathbb{E}}(-X)
$$

I Frank Coolen (my host) I Thomas Augustin (my advisor)

$$
\overline{P}(A) = 1 - \underline{P}(A^c) \qquad \qquad \overline{\mathbb{E}}[X] = -\underline{\mathbb{E}}(-X)
$$

I Frank Coolen (my host) I Thomas Augustin (my advisor) I . . .

 299

Generalized iluck-models

Model for Bayesian inference with sets of priors (Walter & Augustin, 2009)

1. use conjugate priors from general construction method (prior parameters $y^{(0)}$, $n^{(0)}$)

4 伊 ▶

 \mathbf{A} in the set of \mathbf{A}

 299

Generalized iluck-models

Model for Bayesian inference with sets of priors (Walter & Augustin, 2009)

- 1. use conjugate priors from general construction method (prior parameters $y^{(0)}$, $n^{(0)}$)
- 2. construct sets of priors via sets of parameters $\mathbf{y}^{(0)}\in\mathcal{Y}^{(0)}\times\mathbf{n}^{(0)}\in\mathcal{N}^{(0)}$

Generalized iluck-models

Model for Bayesian inference with sets of priors (Walter & Augustin, 2009)

- 1. use conjugate priors from general construction method (prior parameters $y^{(0)}$, $n^{(0)}$)
- 2. construct sets of priors via sets of parameters $\mathbf{y}^{(0)}\in\mathcal{Y}^{(0)}\times\mathbf{n}^{(0)}\in\mathcal{N}^{(0)}$

3. set of posteriors $\hat{=}$ set of (element-wise) updated priors \blacktriangleright still easy to handle: described as set of $(y^{(1)},\,n^{(1)})^{\prime}$ s

$$
y^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{1}{n}\tau(x)
$$

$$
n^{(1)} = n^{(0)} + n
$$

MANABANE

[Basic Idea](#page-35-0) [Generalized i](#page-44-0)LUCK-models

 299

 \sim

Generalized iLUCK-models: Simple Example

Case (i):
$$
y_j^{(0)} \in [0.7, 0.8],
$$
 $k_j/n = 0.75$

Case (ii):
$$
y_j^{(0)} \in [0.2, 0.3],
$$
 $k_j/n = 1$ \longrightarrow \longleftarrow \longleftarrow

イロト イ伊 ト イヨ ト イヨ

[Basic Idea](#page-35-0) [Generalized i](#page-44-0)luck-models

 299

Generalized iLUCK-models: Simple Example

Case (i):
$$
y_j^{(0)} \in [0.7, 0.8],
$$
 $k_j/n = 0.75$
\n
$$
(n^{(0)} \in [1, 8])
$$
\n
$$
y_j^{(1)} \in [0.73, 0.76]
$$
\n
$$
(n^{(0)} \in [17, 24])
$$
\nCase (ii): $y_j^{(0)} \in [0.2, 0.3],$ $k_j/n = 1$
\n
$$
(n^{(0)} \in [1, 8])
$$
\n
$$
(n = 16)
$$
\n
$$
(n = 16)
$$
\n
$$
0
$$

イロメ イ母メ イヨメ イヨ

[Basic Idea](#page-35-0) [Generalized i](#page-44-0)luck-models

 299

Generalized iLUCK-models: Simple Example

Case (i):
$$
y_j^{(0)} \in [0.7, 0.8],
$$
 $k_j/n = 0.75$
\n
$$
(n^{(0)} \in [1, 8])
$$
\n
$$
(n = 16)
$$
\n
$$
y_j^{(1)} \in [0.73, 0.76]
$$
\n
$$
(n^{(0)} \in [17, 24])
$$
\nCase (ii): $y_j^{(0)} \in [0.2, 0.3],$ $k_j/n = 1$
\n
$$
(n^{(0)} \in [1, 8])
$$
\n
$$
(n = 16)
$$
\n
$$
y_j^{(1)} \in [0.73, 0.96]
$$
\n
$$
(n^{(0)} \in [17, 24])
$$
\n
$$
0
$$
\n1

イロメ イ母メ イヨメ イヨ

 QQ

Generalized iLUCK-models: Simple Example

Case (i):
$$
y_j^{(0)} \in [0.7, 0.8],
$$
 $k_j/n = 0.75$
\n
$$
(n^{(0)} \in [1, 8])
$$
\n
$$
y_j^{(1)} \in [0.73, 0.76]
$$
\n
$$
(n^{(0)} \in [17, 24])
$$
\nCase (ii): $y_j^{(0)} \in [0.2, 0.3],$ $k_j/n = 1$
\n
$$
(n^{(0)} \in [1, 8])
$$
\n
$$
y_j^{(1)} \in [0.73, 0.96]
$$
\n
$$
(n^{(0)} \in [17, 24])
$$
\n
$$
(n^{(0)} \in [17, 24])
$$
\n
$$
0
$$
\n1

Generalized iluck-models lead to cautious inferences if, and only if, caution is needed.

イロト イ伊 ト イヨ ト イヨ

 299

Generalized iLUCK-models in Bayesian Linear Regression

 \rightarrow Apply generalized iLUCK-models to Bayesian linear regression in order to improve behaviour!

Advience

Generalized iluck-models in Bayesian Linear Regression

 \rightarrow Apply generalized iLUCK-models to Bayesian linear regression in order to improve behaviour!

CCCP model allows to employ generalized iLUCK-model inference:

 \blacktriangleright Set intervals for $\mathbb{E}[\beta_j] = m_j^{(0)}$ $j^{(0)}$ s

 \rightarrow update step has dimension-individual sensitivity to prior-data conflict, i.e. interval lengths in different dimensions depend on degree of prior-data conflict in that dimension.

 Ω

Generalized iluck-models in Bayesian Linear Regression

 \rightarrow Apply generalized iLUCK-models to Bayesian linear regression in order to improve behaviour!

CCCP model allows to employ generalized iLUCK-model inference:

 \blacktriangleright Set intervals for $\mathbb{E}[\beta_j] = m_j^{(0)}$ $j^{(0)}$ s

 \rightarrow update step has dimension-individual sensitivity to prior-data conflict, i.e. interval lengths in different dimensions depend on degree of prior-data conflict in that dimension.

Fixed covariance structure $M^{(0)} = \frac{n}{n^{(0)}}$ $\frac{n}{n^{(0)}}$ $(\mathsf{X}^\mathsf{T}\mathsf{X})^{-1}$ in $\mathbb{V}(\beta) = \mathbb{E}[\sigma^2] \cdot \mathsf{M}^{(0)}$ seems restrictive, but interval for $n^{(0)}$ gives variety. Defining a more general set of symmetric po-sitive definite matrices could be very difficult!

MANARAT

Generalized iluck-models in Bayesian Linear Regression

 \rightarrow Apply generalized iLUCK-models to Bayesian linear regression in order to improve behaviour!

CCCP model allows to employ generalized iLUCK-model inference:

 \blacktriangleright Set intervals for $\mathbb{E}[\beta_j] = m_j^{(0)}$ $j^{(0)}$ s

 \rightarrow update step has dimension-individual sensitivity to prior-data conflict, i.e. interval lengths in different dimensions depend on degree of prior-data conflict in that dimension.

- Fixed covariance structure $M^{(0)} = \frac{n}{n^{(0)}}$ $\frac{n}{n^{(0)}}$ $(\mathsf{X}^\mathsf{T}\mathsf{X})^{-1}$ in $\mathbb{V}(\beta) = \mathbb{E}[\sigma^2] \cdot \mathsf{M}^{(0)}$ seems restrictive, but interval for $n^{(0)}$ gives variety. Defining a more general set of symmetric po-sitive definite matrices could be very difficult!
- Set interval for $\mathbb{E}[\sigma^2]$. (Update step is a bit tricky, though.)

 299

Summary & References

 \blacktriangleright If observed data is unexpected under the prior model, this surprise is often not adequately reflected in posterior inferences when conjugate priors are used (Lin. Reg.: same inflation factor for all β s).

- ④ 伊 ≯ ④ 重 ≯ ④ 重

つくい

Summary & References

- If observed data is unexpected under the prior model, this surprise is often not adequately reflected in posterior inferences when conjugate priors are used (Lin. Reg.: same inflation factor for all βs).
- Interval probability / sets of probabilities offer the possibility to specify the precision of probability statements explicitly (Lottery B).

MANABANE

Summary & References

- If observed data is unexpected under the prior model, this surprise is often not adequately reflected in posterior inferences when conjugate priors are used (Lin. Reg.: same inflation factor for all βs).
- Interval probability / sets of probabilities offer the possibility to specify the precision of probability statements explicitly (Lottery B).
- \blacktriangleright Generalized iLUCK-models offer a general, manageable, and powerful calculus for Bayesian inference with sets of priors, allowing for adequate reaction to prior-data conflict by increased imprecision.

イロト イタト イミト イミ

Summary & References

- If observed data is unexpected under the prior model, this surprise is often not adequately reflected in posterior inferences when conjugate priors are used (Lin. Reg.: same inflation factor for all βs).
- Interval probability / sets of probabilities offer the possibility to specify the precision of probability statements explicitly (Lottery B).
- \blacktriangleright Generalized iLUCK-models offer a general, manageable, and powerful calculus for Bayesian inference with sets of priors, allowing for adequate reaction to prior-data conflict by increased imprecision.
-

Walter, G. , Augustin, T.: Bayesian linear regression — different conjugate models and their (in)sensitivity to prior-data conflict. In: Kneib, T. , Tutz, G. (eds.), Statistical Modelling and Regression Structures – Festschrift in the Honour of Ludwig Fahrmeir, 2010.

Walter, G. , Augustin, T.: Imprecision and prior-data conflict in generalized Bayesian inference. Journal of Statistical Theory and Practice, 2009. ∢ロト (母) (ヨ) (ヨ)