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Prior-Data Conflict

Prior-Data Conflict =̂ situation in which. . .

I . . . informative prior beliefs and trusted data
(sampling model correct, no outliers, etc.) are in conflict

I “. . . the prior [places] its mass primarily on distributions in
the sampling model for which the observed data is surprising.”
(Evans & Moshonov, 2006)
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Simple Example: Dirichlet-Multinomial-Model

Data: k ∼ M(θ) (
∑

kj = n)

conjugate prior: θ ∼ Dir(α) (
∑
θj = 1)

posterior: θ | k ∼ Dir(α + k)

E[θj ] =
αj∑
αi

=: y
(0)
j

V(θj) =
E[θj ](1− E[θj ])∑

αi + 1

=
y

(0)
j (1− y

(0)
j )

n(0) + 1

Data : k ∼ M(θ)

conjugate prior: θ ∼ Dir(n(0), y(0)) n(0) =
∑
αi

posterior: θ | k ∼ Dir(n(1), y(1))

y
(1)
j =

n(0)

n(0) + n
· y (0)

j +
n

n(0) + n
·
kj

n
n(1) = n(0) + n
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Simple Example: Dirichlet-Multinomial-Model

Case (i):
y

(0)
j = 0.75 ,

(n(0) = 8)

kj/n = 0.75
(n = 16) 0 1

x

Case (ii):
y

(0)
j = 0.25 ,

(n(0) = 8)

kj/n = 1
(n = 16) 0 1

x

I E[θj | k] = y
(1)
j = 0.75, V(θj | k) = 3/400

0 1

(V(θj) = 1/48)

��AA! Posterior inferences do not reflect uncertainty
due to unexpected observations!

��AA!
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Conjugate Priors
Weighted average structure is underneath all common conjugate
priors for exponential family sampling distributions!

X
iid∼ linear, canonical exponential family, i.e.

p(x | θ) ∝ exp
{
〈ψ, τ(x)〉 − nb(ψ)

} [
ψ transformation of θ

]

I conjugate prior:

p(θ) ∝ exp
{
n(0)
[
〈ψ, y (0)〉 − b(ψ)

]}
I (conjugate) posterior:

p(θ | x) ∝ exp
{
n(1)
[
〈ψ, y (1)〉 − b(ψ)

]}
,

where y (1) =
n(0)

n(0) + n
· y (0) +

n

n(0) + n
· 1

n
τ(x) and n(1) = n(0) + n .
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Standard Conjugate Prior (SCP)
Canonically Constructed Conjugate Prior (CCCP)

Bayesian Linear Regression

Are posterior inferences in Bayesian linear regression influenced by
prior-data conflict?

zi = xT
i β + εi

[
xi ∈ IRp , β ∈ IRp

]

εi
iid∼ N(0, σ2)

z = Xβ + ε

I z | β, σ2 ∼ N(Xβ, σ2I)

Prior on (β, σ2): generally taken as p(β, σ2) = p(β | σ2)p(σ2).

I SCP: standard conjugate prior model (e.g., O’Hagan 1994)

I CCCP: “canonically constructed conjugate prior”
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Standard Conjugate Prior (SCP)

β | σ2 ∼ Np(m(0), σ2M(0)) (multivariate Normal)

σ2 ∼ IG (a(0), b(0)) (Inverse Gamma, e.g. p(σ2) ∝ e−
b(0)

σ2

(σ2)a(0)+1
)

m(1) =
(
M(0)−1

+ XTX
)−1 (

M(0)−1
m(0) + XTz

)
M(1) =

(
M(0)−1

+ XTX
)−1

a(1) = a(0) +
n

2

b(1) = b(0) +
1

2

(
zTz + m(0)TM(0)−1

m(0) −m(1)TM(1)−1
m(1)

)
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Standard Conjugate Prior (SCP)
Canonically Constructed Conjugate Prior (CCCP)

SCP: Update step for β | σ2

E[β | σ2] = m(0)

E[β | σ2, z ] = m(1) = (I− A) m(0) + A β̂LS

where A =
(
M(0)−1

+ XTX
)−1

XTX

V(β | σ2) = σ2M(0)

V(β | σ2, z) = σ2M(1) = σ2
(
M(0)−1

+ XTX
)−1

I V(βj | σ2, z) < V(βj | σ2)
Actually of interest:

E[β] = m(0) , V(β) =
b(0)

a(0) − 1
M(0) = E[σ2] M(0)

E[β | z ] = m(1) , V(β | z) =
b(1)

a(1) − 1
M(1) = E[σ2 | z ] M(1)
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Standard Conjugate Prior (SCP)
Canonically Constructed Conjugate Prior (CCCP)

SCP: Update step for σ2

E[σ2 | z ] =
2a(0) − 2

2a(0) + n − 2
E[σ2] +

n − p

2a(0) + n − 2
σ̂2

LS +
p

2a(0) + n − 2
σ̂2

PDC

σ̂2
LS =

1

n − p
(z − Xβ̂LS)T(z − Xβ̂LS)

σ̂2
PDC =

1

p
(m(0) − β̂LS)T

(
M(0) + (XTX)−1

)−1
(m(0) − β̂LS)

I E[σ̂2
PDC | σ2] = σ2

Weights:

I 2a(0) − 2 for E[σ2]: think of V(σ2) = (b(0))2

(a(0)−1)2(a(0)−2)

I n − p for σ̂2
LS: usual df s in least-squares estimate

I p for σ̂2
PDC: dim(β) = number of dimensions in which

prior-data conflict is possible
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Standard Conjugate Prior (SCP)
Canonically Constructed Conjugate Prior (CCCP)

SCP: Summary

E[β | z ] = m(1)

V(β | z) = E[σ2 | z ] ·M(1)

weighted average of prior and LS estimate

may increase due to
prior-data conflict
(weight p)

diagonal strictly decreasing:
V(βj | σ2, z) < V(βj | σ2)

I Posterior variance may increase due to prior-data conflict. But:

I Effect of possible increase of E[σ2 | z ]
contrasted by automatic decrease of M(1)!

I Variance increase by the same factor for all βjs!
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Standard Conjugate Prior (SCP)
Canonically Constructed Conjugate Prior (CCCP)

Canonically Constructed Conjugate Prior (CCCP)
CCCP turns out as a special case of SCP:

β | σ2 ∼ Np

(
m(0) , σ2 n

n(0)
(XTX)−1︸ ︷︷ ︸

=:M(0)

)
σ2 ∼ IG (a(0), b(0))

some linear trafo. of y
(0)
1 ∈ IRp

restricted
covariance
structure

some linear trafo. of n(0) some linear trafo. of y
(0)
2 ∈ IR

E[β | σ2, z ] = m(1) =
n(0)

n(0) + n
E[β | σ2] +

n

n(0) + n
β̂LS

V(β | σ2, z) = σ2M(1) = σ2 n

n(0) + n
(XTX)−1
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Standard Conjugate Prior (SCP)
Canonically Constructed Conjugate Prior (CCCP)

CCCP: Update step for σ2

Again, for the posterior on β it holds that

E[β | z ] = m(1)

V(β | z) = E[σ2 | z ] ·M(1)

such that the update step for E[σ2] is of most interest:

E[σ2 | z ] =
n(0) + p

n(0) + n + p
E[σ2] +

n − p

n(0) + n + p
σ̂2

LS +
p

n(0) + n + p
σ̂2

PDC

σ̂2
PDC =

1

p
(m(0) − β̂LS)T

n(0)

n(0) + n
XTX(m(0) − β̂LS)

[
E[ · | σ2] = σ2

]
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elements
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Generalized Bayesian Inference: Basic Idea

Use set of priors I base inferences on set of posteriors
obtained by element-wise updating

I numbers become intervals, e.g.

E[θ] I
[
E[θ], E[θ]

]
=

[
min

p∈Mθ

Ep[θ], max
p∈Mθ

Ep[θ]

]
P(θ∈A) I

[
P(θ∈A), P(θ∈A)

]
=
[
min Pp(θ∈A), max Pp(θ∈A)

]
Shorter intervals J I more precise probability statements

Lottery A
Number of winning tickets:

exactly known as 5 out of 100
I P(win) = 5/100

Lottery B
Number of winning tickets:

not exactly known, supposedly
between 1 and 7 out of 100
I P(win) = [1/100, 7/100]
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Generalized Bayesian Inference: Basic Idea

Sets of distributions
(
”
credal sets“)

J I Probability Intervals
(lower/upper prob.)

/ Expectation Intervals
(lower/upper prevision)

Weichselberger (2001) Walley (1991)

P(A) = 1− P(Ac) E[X ] = −E(−X )

I The Society for Imprecise Probability: Theories and Applications
(ISIPTA conferences, summer schools,. . . www.sipta.org)

I Frank Coolen (my host)
I Thomas Augustin (my advisor)
I . . .
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Generalized iluck-models

Model for Bayesian inference with sets of priors
(Walter & Augustin, 2009)

1. use conjugate priors from general construction method
(prior parameters y (0), n(0))

2. construct sets of priors via sets of parameters
y (0) ∈ Y(0) × n(0) ∈ N (0)

3. set of posteriors =̂ set of (element-wise) updated priors
I still easy to handle: described as set of (y (1), n(1))’s

y (1) =
n(0)

n(0) + n
· y (0) +

n

n(0) + n
· 1

n
τ(x)

n(1) = n(0) + n
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Generalized iluck-models: Simple Example

Case (i):
y

(0)
j ∈ [0.7, 0.8] ,

(n(0) ∈ [1, 8])

kj/n = 0.75
(n = 16) 0 1

I y
(1)
j ∈ [0.73, 0.76]

(n(0) ∈ [17, 24])
0 1

Case (ii):
y

(0)
j ∈ [0.2, 0.3] ,

(n(0) ∈ [1, 8])

kj/n = 1
(n = 16) 0 1

I y
(1)
j ∈ [0.73, 0.96]

(n(0) ∈ [17, 24])
0 1

Generalized iluck-models lead to cautious inferences
if, and only if, caution is needed.
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Generalized iluck-models in Bayesian Linear Regression

I Apply generalized iluck-models to Bayesian linear regression
in order to improve behaviour!

CCCP model allows to employ generalized iluck-model inference:

I Set intervals for E[βj ] = m
(0)
j s

I update step has dimension-individual sensitivity to
prior-data conflict, i.e. interval lengths in different dimensions
depend on degree of prior-data conflict in that dimension.

I Fixed covariance structure M(0) = n
n(0) (XTX)−1 in

V(β) = E[σ2] ·M(0) seems restrictive, but interval for n(0)

gives variety.
(

Defining a more general set of symmetric po-
sitive definite matrices could be very difficult!

)
I Set interval for E[σ2]. (Update step is a bit tricky, though.)
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Summary & References

I If observed data is unexpected under the prior model, this surprise is
often not adequately reflected in posterior inferences when
conjugate priors are used (Lin. Reg.: same inflation factor for all βs).

I Interval probability / sets of probabilities offer the possibility to
specify the precision of probability statements explicitly (Lottery B).

I Generalized iluck-models offer a general, manageable, and
powerful calculus for Bayesian inference with sets of priors, allowing
for adequate reaction to prior-data conflict by increased imprecision.

Walter, G. , Augustin, T.: Bayesian linear regression — different
conjugate models and their (in)sensitivity to prior-data conflict. In:
Kneib, T. , Tutz, G. (eds.), Statistical Modelling and Regression
Structures – Festschrift in the Honour of Ludwig Fahrmeir, 2010.

Walter, G. , Augustin, T.: Imprecision and prior-data conflict in
generalized Bayesian inference. Journal of Statistical Theory and
Practice, 2009.
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