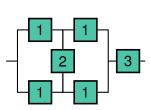
Nonparametric Bayesian System Reliability with Sets of Priors

Gero Walter¹, Louis Aslett², Frank Coolen³

¹Eindhoven University of Technology, Eindhoven, NL ²University of Oxford, Oxford, UK ³Durham University, Durham, UK

g.m.walter@tue.nl

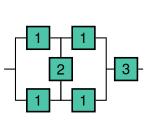
2016-03-17





component test data:

 n_k failure times for components of type k, k = 1, ..., K

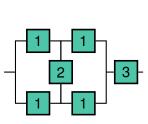


component test data:

 n_k failure times for components of type k, k = 1, ..., K

cautious assumptions on component reliability:

expert information, e.g. from maintenance managers and staff



component test data:

 n_k failure times for components of type k, k = 1, ..., K

cautious assumptions on component reliability:

expert information,

e.g. from maintenance managers and staff

How to combine these two information sources?

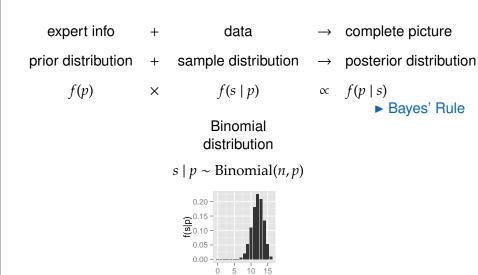
expert info

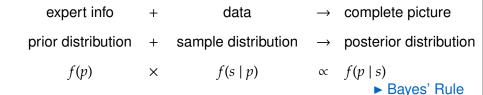
+

data

complete picture

expert info	+	data	\rightarrow	complete picture
prior distribution	+	sample distribution	\rightarrow	posterior distribution
<i>f</i> (<i>p</i>)	×	<i>f</i> (<i>s</i> <i>p</i>)	œ	f(p s) ► Bayes' Rule

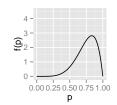


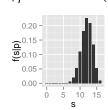


Binomial

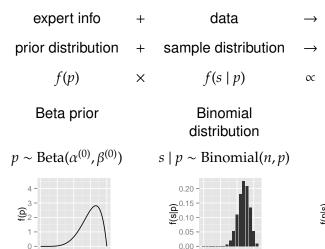
Beta prior

distribution $p \sim \text{Beta}(\alpha^{(0)}, \beta^{(0)})$ $s \mid p \sim \text{Binomial}(n, p)$





0.00 0.25 0.50 0.75 1.00



10 15

→ complete picture

→ posterior distribution

 $f(p \mid s)$

► Bayes' Rule

Beta posterior

► conjugacy $p \mid s \sim \text{Beta}(\alpha^{(n)}, \beta^{(n)})$

4-(33-(3)2-1-0-0.00 0.25 0.50 0.75 1.00

TU/e Technische Universiteit Eindhoven University of Technology

 $p \sim \text{Beta}(\alpha^{(0)}, \beta^{(0)})$

expert info → complete picture data prior distribution sample distribution posterior distribution f(p) $f(s \mid p)$ $\propto f(p \mid s)$ X ► Bayes' Rule Beta prior Binomial Beta posterior distribution conjugacy

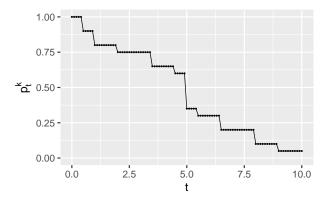
 $s \mid p \sim \text{Binomial}(n, p)$

- conjugate prior makes learning about parameter tractable, just update hyperparameters: $\alpha^{(0)} \to \alpha^{(n)}, \beta^{(0)} \to \beta^{(n)}$
- ► closed form for some inferences: $E[p \mid s] = \frac{\alpha^{(n)}}{\alpha^{(n)} + \beta^{(n)}}$

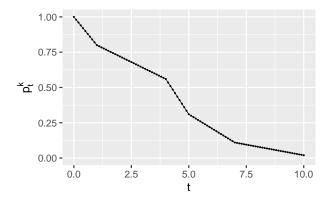
 $p \mid s \sim \text{Beta}(\alpha^{(n)}, \beta^{(n)})$

Functioning probability p_t^k of \mathbf{k} for each time $t \in \mathcal{T} = \{\dot{t}_1, \dot{t}_2, \ldots\}$

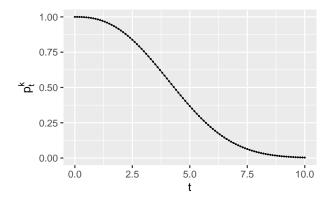
Functioning probability p_t^k of \mathbf{k} for each time $t \in \mathcal{T} = \{i_1, i_2, \ldots\}$



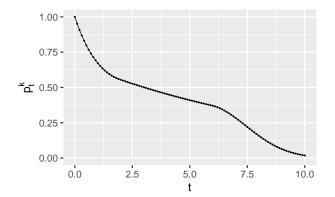
Functioning probability p_t^k of \mathbf{k} for each time $t \in \mathcal{T} = \{i_1, i_2, \ldots\}$



Functioning probability p_t^k of \mathbf{k} for each time $t \in \mathcal{T} = \{i_1, i_2, \ldots\}$



Functioning probability p_t^k of \mathbf{k} for each time $t \in \mathcal{T} = \{\dot{t}_1, \dot{t}_2, \ldots\}$



Functioning probability p_t^k of \mathbf{k} for each time $t \in \mathcal{T} = \{i_1, i_2, \ldots\}$

▶ discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

use Bayesian inference to estimate p_t^k 's:

Functioning probability p_t^k of \mathbf{k} for each time $t \in \mathcal{T} = \{i_1, i_2, \ldots\}$

▶ discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

use Bayesian inference to estimate p_t^k 's:

▶ failure times $t^k = (t_1^k, ..., t_{n_k}^k)$ from component test data number of type k components functioning at t: $S_t^k \mid p_t^k \sim \text{Binomial}(p_t^k, n_k)$

Functioning probability p_t^k of \mathbf{k} for each time $t \in \mathcal{T} = \{i_1, i_2, \ldots\}$

▶ discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

use Bayesian inference to estimate p_t^k 's:

- ▶ failure times $t^k = (t_1^k, ..., t_{n_k}^k)$ from component test data number of type k components functioning at t: $S_t^k \mid p_t^k \sim \text{Binomial}(p_t^k, n_k)$
- expert knowledge

Beta prior for each *k* and *t*:

$$p_t^k \sim \operatorname{Beta}(\alpha_{k,t}^{(0)}, \beta_{k,t}^{(0)})$$

Functioning probability p_t^k of \mathbf{k} for each time $t \in \mathcal{T} = \{i_1, i_2, \ldots\}$

▶ discrete component reliability function $R^k(t) = p_t^k$, $t \in \mathcal{T}$.

use Bayesian inference to estimate p_t^k 's:

- ▶ failure times $t^k = (t_1^k, ..., t_{n_k}^k)$ from component test data number of type k components functioning at t: $S_t^k \mid p_t^k \sim \text{Binomial}(p_{t,t}^k n_k)$
- expert knowledge

Beta prior for each *k* and *t*:

$$p_t^k \sim \text{Beta}(\alpha_{kt}^{(0)}, \beta_{kt}^{(0)})$$

complete picture

Beta posterior for each *k* and *t*:

$$p_t^k \mid s_t^k \sim \text{Beta}(\alpha_{k,t}^{(n)}, \beta_{k,t}^{(n)})$$

Prior-Data Conflict

- informative prior beliefs and trusted data
 (sampling model correct, no outliers, etc.) are in conflict
- "[...] the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising" (Evans and Moshonov 2006)
- there are not enough data to overrule the prior

$$\begin{split} n^{(0)} &= \alpha^{(0)} + \beta^{(0)} \,, \qquad y^{(0)} &= \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}} \,, \quad \text{which are updated as} \\ n^{(n)} &= n^{(0)} + n \,, \qquad y^{(n)} &= \frac{n^{(0)}}{n^{(0)} + n} \, y^{(0)} + \frac{n}{n^{(0)} + n} \, \cdot \frac{s}{n} \end{split}$$

$$n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \quad \text{which are updated as}$$

$$n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}$$

$$y^{(0)} = E[p]$$

$$n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \quad \text{which are updated as}$$

$$n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}$$

$$y^{(0)} = E[p] \quad y^{(n)} = E[p \mid s]$$

$$n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \quad \text{which are updated as}$$

$$n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}$$

$$y^{(0)} = E[p] \quad y^{(n)} = E[p \mid s] \quad \text{ML estimator } \hat{p}$$

$$n^{(0)} = \alpha^{(0)} + \beta^{(0)} \,, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}} \,, \quad \text{which are updated as}$$

$$n^{(n)} = n^{(0)} + n \,, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \, y^{(0)} + \frac{n}{n^{(0)} + n} \, \cdot \frac{s}{n}$$

$$n^{(0)} = \text{pseudocounts} \quad y^{(0)} = \text{E}[p] \quad y^{(n)} = \text{E}[p \mid s] \quad \text{ML estimator } \hat{p}$$

reparametrisation helps to understand effect of prior-data conflict:

$$n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \quad \text{which are updated as}$$

$$n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}$$

$$n^{(0)} = \text{pseudocounts} \qquad y^{(0)} = \text{E}[p] \qquad y^{(n)} = \text{E}[p \mid s] \qquad \text{ML estimator } \hat{p}$$

 $E[p \mid s] = y^{(n)}$ is a weighted average of E[p] and \hat{p} !

$$n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \quad \text{which are updated as}$$

$$n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}$$

$$n^{(0)} = \text{pseudocounts} \qquad y^{(0)} = \text{E}[p] \qquad y^{(n)} = \text{E}[p \mid s] \qquad \text{ML estimator } \hat{p}$$

$$\text{E}[p \mid s] = y^{(n)} \text{ is a weighted average of E}[p] \text{ and } \hat{p}!$$

$$\text{Var}[p \mid s] = \frac{y^{(n)}(1 - y^{(n)})}{n^{(n)} + 1} \text{ decreases with } n!$$

... model uncertainty in probability statements

... model uncertainty in probability statements

Uncertainty about probability statements

smaller sets = more precise probability statements

Lottery A

Number of winning tickets: exactly known as 5 out of 100

P(win) = 5/100

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100

P(win) = [1/100, 7/100]

- ... model uncertainty in probability statements
- \dots allow for partial or vague information on p_t^{k} 's

- ... model uncertainty in probability statements
- \dots allow for partial or vague information on p_t^k 's
- ... highlight prior-data conflict.

- ... model uncertainty in probability statements
- ... allow for partial or vague information on p_t^k 's
- ... highlight prior-data conflict.
- Separate uncertainty *whithin the model* (reliability statements) from uncertainty *about the model* (which parameters).

- ... model uncertainty in probability statements
- \dots allow for partial or vague information on p_t^k 's
- ... highlight prior-data conflict.
- Separate uncertainty *whithin the model* (reliability statements) from uncertainty *about the model* (which parameters).
- Systematic sensitivity analysis / robust Bayesian approach

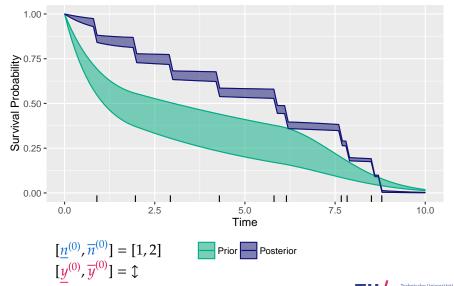
Add imprecision as new modelling dimension: Sets of priors...

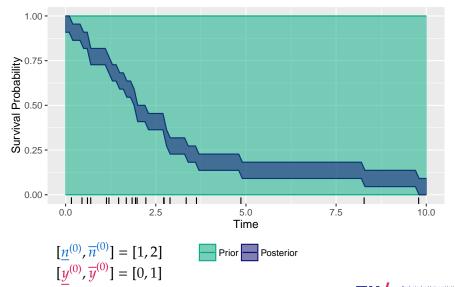
- ... model uncertainty in probability statements
- ... allow for partial or vague information on p_t^k 's
- ... highlight prior-data conflict.
- Separate uncertainty whithin the model (reliability statements) from uncertainty about the model (which parameters).
- Systematic sensitivity analysis / robust Bayesian approach
- ▶ Walter and Augustin (2009), Walter (2013): vary $(n^{(0)}, y^{(0)})$ in a set $= [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [y^{(0)}, \overline{y}^{(0)}]$
 - easy elicitation, tractability & prior-data conflict sensitivity

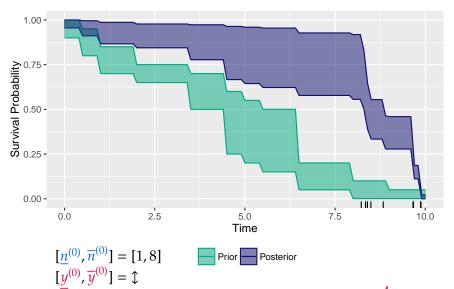
Add imprecision as new modelling dimension: Sets of priors...

- ... model uncertainty in probability statements
- \dots allow for partial or vague information on p_t^k 's
- ... highlight prior-data conflict.
- Separate uncertainty whithin the model (reliability statements) from uncertainty about the model (which parameters).
- Systematic sensitivity analysis / robust Bayesian approach
- ▶ Walter and Augustin (2009), Walter (2013): vary $(n^{(0)}, y^{(0)})$ in a set $= [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [y^{(0)}, \overline{y}^{(0)}]$
 - easy elicitation, tractability & prior-data conflict sensitivity
- Bounds for inferences (point estimate, prediction, ...)
 by min/max over

Component Reliability with Sets of Priors







$$R_{\text{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\text{sys}} > t \mid \cdots)$$

$$= \sum_{l=0}^{m_{1}} \cdots \sum_{l=0}^{m_{K}} \Phi(l_{1}, \dots, l_{K}) \prod_{k=1}^{K} P(C_{t}^{k} = l_{k} \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})$$

$$R_{\mathsf{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\mathsf{sys}} > t \mid \cdots)$$

$$= \sum_{l_{1}=0}^{m_{1}} \cdots \sum_{l_{K}=0}^{m_{K}} \Phi(l_{1}, \dots, l_{K}) \prod_{k=1}^{K} P(C_{t}^{k} = l_{k} \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})$$

Survival signature
$$\Phi(l_1,\dots,l_K)$$
 (Coolen and Coolen-Maturi 2012)
$$= P(\text{system functions} \mid \{l_k \ k \text{ 's function}\}^{1:K})$$

$$\frac{l_1}{0} \quad \frac{l_2}{0} \quad \frac{l_3}{0} \quad \frac{\Phi}{0} \quad \frac{l_1}{1} \quad \frac{l_2}{1} \quad \frac{l_3}{0} \quad \frac{\Phi}{0}$$

$$\frac{l_1}{1} \quad \frac{l_2}{0} \quad \frac{l_3}{1} \quad \frac{\Phi}{0}$$

$$\frac{l_1}{1} \quad \frac{l_3}{1} \quad \frac{l_3}{1} \quad \frac{1}{1} \quad \frac{1}{1}$$

$$\frac{l_3}{1} \quad \frac{l_3}{1} \quad \frac{l_3}{1} \quad \frac{l_3}{1} \quad \frac{1}{1} \quad \frac{1}{1}$$

$$\frac{l_3}{1} \quad \frac{l_3}{1} \quad \frac{l_3}{1} \quad \frac{1}{1} \quad \frac{1}{1}$$

$$R_{\mathsf{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\mathsf{sys}} > t \mid \cdots)$$

$$= \sum_{l_{1}=0}^{m_{1}} \cdots \sum_{l_{K}=0}^{m_{K}} \Phi(l_{1}, \dots, l_{K}) \prod_{k=1}^{K} P(C_{t}^{k} = l_{k} \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})$$

Survival signature
$$\Phi(l_1,\dots,l_K)$$
 (Coolen and Coolen-Maturi 2012)
$$= P(\text{system functions} \mid \{l_k \ \textbf{k} \ \text{'s function}\}^{1:K})$$

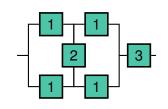
$$\frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 0 \quad 1 \quad 0} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{0 \quad 1 \quad 1 \quad 0}$$

$$\frac{l_1 \quad 0 \quad 1 \quad 0}{1 \quad 0 \quad 1 \quad 1 \quad 1} \quad 0$$

$$\frac{l_1 \quad 0 \quad 1 \quad 0}{1 \quad 0 \quad 1 \quad 1 \quad 1} \quad 0$$

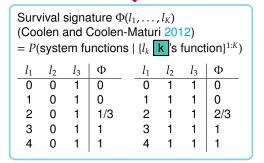
$$\frac{l_1 \quad 0 \quad 1 \quad 1 \quad 1}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1 \quad 1}$$

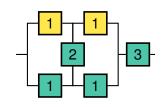
$$\frac{l_1 \quad 0 \quad 1 \quad 1 \quad 1}{1 \quad 0 \quad 0} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 1 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 1 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad \Phi}{1 \quad 0 \quad 1} \quad \frac{l_1 \quad l_2 \quad l_3 \quad h_3 \quad h$$



$$R_{\mathsf{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\mathsf{sys}} > t \mid \cdots)$$

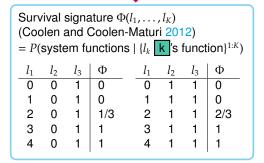
$$= \sum_{l_{1}=0}^{m_{1}} \cdots \sum_{l_{K}=0}^{m_{K}} \Phi(l_{1}, \dots, l_{K}) \prod_{k=1}^{K} P(C_{t}^{k} = l_{k} \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})$$

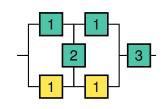




$$R_{\mathsf{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\mathsf{sys}} > t \mid \cdots)$$

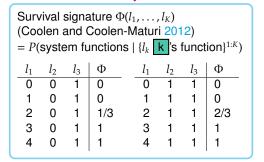
$$= \sum_{l_{1}=0}^{m_{1}} \cdots \sum_{l_{K}=0}^{m_{K}} \Phi(l_{1}, \dots, l_{K}) \prod_{k=1}^{K} P(C_{t}^{k} = l_{k} \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})$$

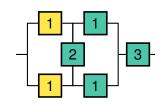




$$R_{\mathsf{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\mathsf{sys}} > t \mid \cdots)$$

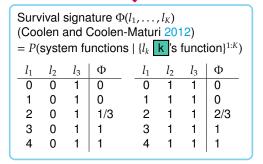
$$= \sum_{l_{1}=0}^{m_{1}} \cdots \sum_{l_{K}=0}^{m_{K}} \Phi(l_{1}, \dots, l_{K}) \prod_{k=1}^{K} P(C_{t}^{k} = l_{k} \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})$$

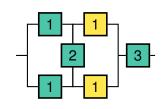




$$R_{\text{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, \mathbf{y}_{k,t}^{(0)}, \mathbf{t}^{k}\}) = P(T_{\text{sys}} > t \mid \cdots)$$

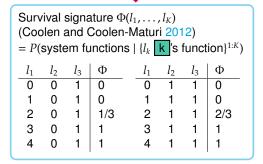
$$= \sum_{l_{1}=0}^{m_{1}} \cdots \sum_{l_{K}=0}^{m_{K}} \Phi(l_{1}, \dots, l_{K}) \prod_{k=1}^{K} P(C_{t}^{k} = l_{k} \mid n_{k,t}^{(0)}, \mathbf{y}_{k,t}^{(0)}, \mathbf{t}^{k})$$

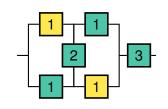




$$R_{\mathsf{sys}}(t \mid \bigcup_{k=1}^{K} \{ n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k \}) = P(T_{\mathsf{sys}} > t \mid \cdots)$$

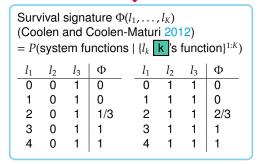
$$= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k)$$

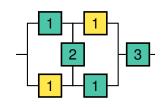




$$R_{\mathsf{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\mathsf{sys}} > t \mid \cdots)$$

$$= \sum_{l_{1}=0}^{m_{1}} \cdots \sum_{l_{K}=0}^{m_{K}} \Phi(l_{1}, \dots, l_{K}) \prod_{k=1}^{K} P(C_{t}^{k} = l_{k} \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})$$





Closed form for the system reliability via the survival signature:

$$R_{\mathsf{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\}) = P(T_{\mathsf{sys}} > t \mid \cdots)$$

$$= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k)$$

Survival signature $\Phi(l_1,\ldots,l_K)$ (Coolen and Coolen-Maturi 2012) = $P(\text{system functions} \mid \{l_k \mid \mathbf{k} \text{ 's function}\}^{1:K})$

Posterior predictive probability that in a new system, l_k of the m_k k 's function at time t:

$$\begin{aligned} \binom{m_k}{l_k} & \int [P(T < t \mid p_t^k)]^{l_k} \\ & [P(T \ge t \mid p_t^k)]^{m_k - l_k} \\ & f(p_t^k \mid n_{k,t'}^{(0)}, y_{k,t}^{(0)}, t^k) \, dp_t^k \end{aligned}$$

analytical solution for integral:

 $C_t^k \mid n_{k+}^{(0)}, y_{k+}^{(0)}, t^k \sim \text{Beta-binomial}$

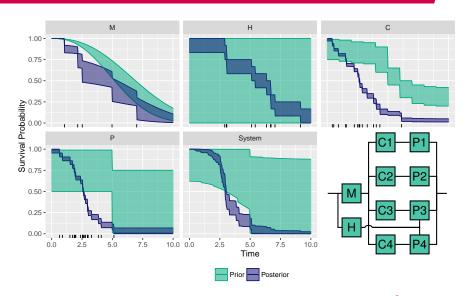
System Reliability Bounds

- ▶ Bounds for $R_{\text{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\})$ over $\bigcup_{k=1}^{K} \{$
 - ► min $R_{\text{sys}}(\cdot)$ by $y_{k,t}^{(0)} = \underline{y}_{k,t}^{(0)}$ for any $n_{k,t}^{(0)}$ (Walter, Aslett, and Coolen 2016, Theorem 1)

- ▶ Bounds for $R_{\text{sys}}\left(t \mid \bigcup_{k=1}^{K} \left\{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\right\}\right)$ over $\bigcup_{k=1}^{K} \left\{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\right\}$
 - ► min $R_{\text{sys}}(\cdot)$ by $y_{k,t}^{(0)} = \underline{y}_{k,t}^{(0)}$ for any $n_{k,t}^{(0)}$ (Walter, Aslett, and Coolen 2016, Theorem 1)
 - ► min $R_{sys}(\cdot)$ for $\underline{n}_{k,t}^{(0)}$ or $\overline{n}_{k,t}^{(0)}$ according to simple conditions (Walter, Aslett, and Coolen 2016, Theorem 2 & Lemma 3)

- ▶ Bounds for $R_{\text{sys}}\left(t \mid \bigcup_{k=1}^{K} \left\{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\right\}\right)$ over $\bigcup_{k=1}^{K} \left\{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\right\}$
 - ► min $R_{\text{sys}}(\cdot)$ by $y_{k,t}^{(0)} = \underline{y}_{k,t}^{(0)}$ for any $n_{k,t}^{(0)}$ (Walter, Aslett, and Coolen 2016, Theorem 1)
 - ► min $R_{sys}(\cdot)$ for $\underline{n}_{k,t}^{(0)}$ or $\overline{n}_{k,t}^{(0)}$ according to simple conditions (Walter, Aslett, and Coolen 2016, Theorem 2 & Lemma 3)
 - numeric optimization over $[\underline{n}_{k,t}^{(0)},\overline{n}_{k,t}^{(0)}]$ in the very few cases where Theorem 2 & Lemma 3 do not apply

- ▶ Bounds for $R_{\text{sys}}\left(t \mid \bigcup_{k=1}^{K} \left\{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\right\}\right)$ over $\bigcup_{k=1}^{K} \left\{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\right\}$
 - ► min $R_{\text{sys}}(\cdot)$ by $y_{k,t}^{(0)} = \underline{y}_{k,t}^{(0)}$ for any $n_{k,t}^{(0)}$ (Walter, Aslett, and Coolen 2016, Theorem 1)
 - ► min $R_{sys}(\cdot)$ for $\underline{n}_{k,t}^{(0)}$ or $\overline{n}_{k,t}^{(0)}$ according to simple conditions (Walter, Aslett, and Coolen 2016, Theorem 2 & Lemma 3)
 - numeric optimization over $[\underline{n}_{k,t}^{(0)},\overline{n}_{k,t}^{(0)}]$ in the very few cases where Theorem 2 & Lemma 3 do not apply
 - ▶ implemented in R package ReliabilityTheory (Aslett 2016)



Summary:

- Nonparametric modeling of component reliability curves
- Bayesian model combining expert knowledge and test data
- Set of system reliability functions reflects uncertainties from limited data, vague expert information, and prior-data conflict
- ► Easy-to-use implementation in **R** package ReliabilityTheory (Aslett 2016)

Summary:

- Nonparametric modeling of component reliability curves
- Bayesian model combining expert knowledge and test data
- Set of system reliability functions reflects uncertainties from limited data, vague expert information, and prior-data conflict
- ► Easy-to-use implementation in **R** package ReliabilityTheory (Aslett 2016)

Next steps:

- Allow right-censored observations (RUL estimation)
- Allow dependence between components (common-cause failure, . . .)
- ▶ Use for system design (where to put extra redundancy?)
- Use for maintenance planning

- Aslett, Louis (2016). *ReliabilityTheory: Tools for structural reliability analysis.* R package. URL: http://www.louisaslett.com.
- Coolen, Frank and Tahani Coolen-Maturi (2012). "Generalizing the Signature to Systems with Multiple Types of Components". In: *Complex Systems and Dependability*. Ed. by W. Zamojski et al. Vol. 170. Advances in Intelligent and Soft Computing. Springer, pp. 115–130. DOI: 10.1007/978-3-642-30662-4_8.
- Evans, Michael and Hadas Moshonov (2006). "Checking for Prior-Data Conflict". In: *Bayesian Analysis* 1, pp. 893–914. URL:
 - http://projecteuclid.org/euclid.ba/1340370946.
- Walter, Gero (2013). "Generalized Bayesian Inference under Prior-Data Conflict". PhD thesis. Department of Statistics, LMU Munich. URL:
 - http://edoc.ub.uni-muenchen.de/17059/.
 alter, Gero, Louis Aslett, and Frank Coolen (2016). "Bayes
- Walter, Gero, Louis Aslett, and Frank Coolen (2016). "Bayesian Nonparametric System Reliability using Sets of Priors". Submitted to *International Journal of Approximate Reasoning*. URL: http://arxiv.org/abs/1602.01650.
- Walter, Gero and Thomas Augustin (2009). "Imprecision and Prior-data Conflict in Generalized Bayesian Inference". In: *Journal of Statistical Theory and Practice* 3, pp. 255–271. DOI: 10.1080/15598608.2009.10411924.

