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We want to learn about the system reliability
Rsys(t) = P(Tsys > t) (system survival function)
based on

I component test data:
nk failure times for components of type k,
k = 1, . . . ,K

I cautious assumptions
on component reliability:

expert information,
e.g. from maintenance managers and staff

How to combine these two information sources?
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Bayesian Inference

expert info + data → complete picture

prior distribution + sample distribution → posterior distribution

f (p) × f (s | p) ∝ f (p | s)
I Bayes’ Rule

Beta prior Binomial Beta posterior
distribution I conjugacy

p ∼ Beta(α(0), β(0)) s | p ∼ Binomial(n, p) p | s ∼ Beta(α(n), β(n))

I conjugate prior makes learning about parameter tractable,
just update hyperparameters: α(0)

→ α(n), β(0)
→ β(n)

I closed form for some inferences: E[p | s] = α(n)

α(n)+β(n)0.00
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Nonparametric Component Reliability

Functioning probability pk
t of k for each time t ∈ T = {ṫ1, ṫ2, . . .}

I discrete component reliability function Rk(t) = pk
t , t ∈ T .
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use Bayesian inference to estimate pk
t ’s:

I failure times tk = (tk
1, . . . , t

k
nk

) from component test data
number of type k components functioning at t:
Sk

t | p
k
t ∼ Binomial(pk

t ,nk)
I expert knowledge

Beta prior for each k and t:
pk

t ∼ Beta(α(0)
k,t , β

(0)
k,t )

I complete picture
Beta posterior for each k and t:
pk

t | s
k
t ∼ Beta(α(n)

k,t , β
(n)
k,t )
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I discrete component reliability function Rk(t) = pk
t , t ∈ T .

● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
t

p tk

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
t

p tk

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
t

p tk

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
t

p tk

use Bayesian inference to estimate pk
t ’s:

I failure times tk = (tk
1, . . . , t

k
nk

) from component test data
number of type k components functioning at t:
Sk

t | p
k
t ∼ Binomial(pk

t ,nk)
I expert knowledge

Beta prior for each k and t:
pk

t ∼ Beta(α(0)
k,t , β

(0)
k,t )

I complete picture
Beta posterior for each k and t:
pk

t | s
k
t ∼ Beta(α(n)

k,t , β
(n)
k,t )



3/11

/

Nonparametric Component Reliability

Functioning probability pk
t of k for each time t ∈ T = {ṫ1, ṫ2, . . .}
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I discrete component reliability function Rk(t) = pk
t , t ∈ T .

● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
t

p tk

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
t

p tk

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
t

p tk

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
t

p tk

use Bayesian inference to estimate pk
t ’s:

I failure times tk = (tk
1, . . . , t

k
nk

) from component test data
number of type k components functioning at t:
Sk

t | p
k
t ∼ Binomial(pk

t ,nk)
I expert knowledge

Beta prior for each k and t:
pk

t ∼ Beta(α(0)
k,t , β

(0)
k,t )

I complete picture
Beta posterior for each k and t:
pk

t | s
k
t ∼ Beta(α(n)

k,t , β
(n)
k,t )



3/11

/

Nonparametric Component Reliability

Functioning probability pk
t of k for each time t ∈ T = {ṫ1, ṫ2, . . .}
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use Bayesian inference to estimate pk
t ’s:

I failure times tk = (tk
1, . . . , t

k
nk

) from component test data
number of type k components functioning at t:
Sk

t | p
k
t ∼ Binomial(pk

t ,nk)
I expert knowledge

Beta prior for each k and t:
pk

t ∼ Beta(α(0)
k,t , β

(0)
k,t )

I complete picture
Beta posterior for each k and t:
pk

t | s
k
t ∼ Beta(α(n)

k,t , β
(n)
k,t )
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Prior-Data Conflict

What if expert information and data tell different stories?

Prior-Data Conflict
I informative prior beliefs and trusted data

(sampling model correct, no outliers, etc.) are in conflict
I “[. . . ] the prior [places] its mass primarily on distributions in the

sampling model for which the observed data is surprising”
(Evans and Moshonov 2006)

I there are not enough data to overrule the prior

I reparametrisation helps to understand effect of prior-data conflict:

n(0) = α(0) + β(0) , y(0) =
α(0)

α(0) + β(0)
, which are updated as

n(n) = n(0) + n , y(n) =
n(0)

n(0) + n
y(0) +

n
n(0) + n

·
s
n

y(0) = E[p] y(n) = E[p | s] ML estimator p̂n(0) = pseudocounts

E[p | s] = y(n) is a weighted average of E[p] and p̂!

Var[p | s] =
y(n)(1 − y(n))

n(n) + 1
decreases with n!
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Sets of Priors

Add imprecision as new modelling dimension:
Sets of priors. . .

. . . model uncertainty in probability statements

. . . allow for partial or vague information on pk
t ’s

. . . highlight prior-data conflict.

I Separate uncertainty whithin the model (reliability statements)
from uncertainty about the model (which parameters).

I Systematic sensitivity analysis / robust Bayesian approach
I Walter and Augustin (2009), Walter (2013):

vary (n(0), y(0)) in a set IΠ(0) = [n(0),n(0)] × [y(0), y(0)]
I easy elicitation, tractability & prior-data conflict sensitivity

I Bounds for inferences (point estimate, prediction, . . . )
by min/max over IΠ(0)

Uncertainty about probability statements
smaller sets = more precise probability statements

Lottery A
Number of winning tickets:

exactly known as 5 out of 100
I P(win) = 5/100

Lottery B
Number of winning tickets:

not exactly known, supposedly
between 1 and 7 out of 100
I P(win) = [1/100, 7/100]
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Component Reliability with Sets of Priors
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System Reliability

I Closed form for the system reliability via the survival signature:

Rsys
(
t |

⋃K
k=1

{
n(0)

k,t , y
(0)
k,t , t

k
})

= P(Tsys > t | · · · )

=

m1∑
l1=0

· · ·

mK∑
lK=0

Φ(l1, . . . , lK)
K∏

k=1

P(Ck
t = lk | n

(0)
k,t , y

(0)
k,t , t

k)

Survival signature Φ(l1, . . . , lK)
(Coolen and Coolen-Maturi 2012)
= P(system functions | {lk k ’s function}1:K)

l1 l2 l3 Φ

0 0 1 0
1 0 1 0
2 0 1 1/3
3 0 1 1
4 0 1 1

l1 l2 l3 Φ

0 1 1 0
1 1 1 0
2 1 1 2/3
3 1 1 1
4 1 1 1

3 3 7 7 7 7

11

11

11

11

2 3

Posterior predictive probability that
in a new system, lk of the mk k ’s
function at time t:(mk

lk

) ∫
[P(T < t | pk

t )]lk

[P(T ≥ t | pk
t )]mk−lk

f (pk
t | n

(0)
k,t , y

(0)
k,t , t

k) dpk
t

I analytical solution for integral:
Ck

t | n
(0)
k,t , y

(0)
k,t , t

k
∼ Beta-binomial
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System Reliability Bounds

I Bounds for Rsys
(

t
∣∣∣ K⋃

k=1

{
n(0)

k,t , y
(0)
k,t , t

k
})

over
K⋃

k=1

{
IΠ(0)

k,t

}
:

I min Rsys(·) by y(0)
k,t = y(0)

k,t
for any n(0)

k,t
(Walter, Aslett, and Coolen 2016, Theorem 1)

I min Rsys(·) for n(0)
k,t or n(0)

k,t according to simple conditions
(Walter, Aslett, and Coolen 2016, Theorem 2 & Lemma 3)

I numeric optimization over [n(0)
k,t ,n

(0)
k,t ] in the very few cases

where Theorem 2 & Lemma 3 do not apply
I implemented in R package ReliabilityTheory (Aslett 2016)
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Summary & Outlook

Summary:
I Nonparametric modeling of component reliability curves
I Bayesian model combining expert knowledge and test data
I Set of system reliability functions reflects uncertainties from

limited data, vague expert information, and prior-data conflict
I Easy-to-use implementation in R package
ReliabilityTheory (Aslett 2016)

Next steps:
I Allow right-censored observations (RUL estimation)
I Allow dependence between components

(common-cause failure, . . . )
I Use for system design (where to put extra redundancy?)
I Use for maintenance planning
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