Nonparametric Bayesian System Reliability with Sets of Priors

Gero Walter 1 , Louis Aslett², Frank Coolen³

¹ Eindhoven University of Technology, Eindhoven, NL ²University of Oxford, Oxford, UK ³Durham University, Durham, UK

<g.m.walter@tue.nl>

MMR Durham 2016-04-13

We want to learn about the system reliability $R_{sys}(t) = P(T_{sys} > t)$ (system survival function) based on

We want to learn about the system reliability $R_{\text{sys}}(t) = P(T_{\text{sys}} > t)$ (system survival function) based on

component test data:

nk failure times for components of type *k*, $k = 1, \ldots, K$

We want to learn about the system reliability $R_{\text{sys}}(t) = P(T_{\text{sys}} > t)$ (system survival function) based on

component test data:

nk failure times for components of type *k*, $k = 1, \ldots, K$

 \blacktriangleright cautious assumptions on component reliability:

expert information,

e.g. from maintenance managers and staff

We want to learn about the system reliability $R_{\text{sys}}(t) = P(T_{\text{sys}} > t)$ (system survival function) based on

component test data:

nk failure times for components of type *k*, $k = 1, \ldots, K$

 \blacktriangleright cautious assumptions on component reliability:

expert information,

e.g. from maintenance managers and staff

How to combine these two information sources?

expert info $+$ data \rightarrow complete picture

- \triangleright conjugate prior makes learning about parameter tractable, just update hyperparameters: $\quad \alpha^{(0)} \rightarrow \alpha^{(n)}, \, \beta^{(0)} \rightarrow \beta^{(n)}$
- \triangleright closed form for some inferences: $E[p \mid s] = \frac{\alpha^{(n)}}{\alpha^{(n)}+s}$ $\alpha^{(n)} + \beta^{(n)}$

use Bayesian inference to estimate p_{t}^{k} 's:

use Bayesian inference to estimate p_{t}^{k} 's:

F failure times $t^k = (t_1^k)$ $\mathbf{f}_1^k, \ldots, \mathbf{f}_{n_k}^k$) from component test data number of type *k* components functioning at *t*: $S_t^k \mid p_t^k \sim \text{Binomial}(p_t^k, n_k)$

use Bayesian inference to estimate p_{t}^{k} 's:

F failure times $t^k = (t_1^k)$ $\mathbf{f}_1^k, \ldots, \mathbf{f}_{n_k}^k$) from component test data number of type *k* components functioning at *t*: $S_t^k \mid p_t^k \sim \text{Binomial}(p_t^k, n_k)$

 \blacktriangleright expert knowledge

Beta prior for each *k* and *t*:

 $p_t^k \sim \text{Beta}(\alpha_{k,t}^{(0)})$ ${}^{(0)}_{k,t}$, ${}^{(0)}_{k,t}$

use Bayesian inference to estimate p_{t}^{k} 's:

F failure times $t^k = (t_1^k)$ $\mathbf{f}_1^k, \ldots, \mathbf{f}_{n_k}^k$) from component test data number of type *k* components functioning at *t*: $S_t^k \mid p_t^k \sim \text{Binomial}(p_t^k, n_k)$

 \blacktriangleright expert knowledge

Beta prior for each *k* and *t*:

 $p_t^k \sim \text{Beta}(\alpha_{k,t}^{(0)})$ ${}^{(0)}_{k,t}$, ${}^{(0)}_{k,t}$

 \blacktriangleright complete picture

Beta posterior for each *k* and *t*: $p_t^k \mid s_t^k$ ∼ Beta($α_{k,t}^{(n)}$ ${}^{(n)}_{k,t}, \beta^{(n)}_{k,t})$

What if expert information and data tell different stories?

What if expert information and data tell different stories?

Prior-Data Conflict

- **Informative prior beliefs and trusted data** (sampling model correct, no outliers, etc.) are in conflict
- \cdot "[...] the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising" (Evans and Moshonov [2006\)](#page-57-0)
- \rightarrow there are not enough data to overrule the prior

What if expert information and data tell different stories?

 \blacktriangleright reparametrisation helps to understand effect of prior-data conflict:

What if expert information and data tell different stories?

 \blacktriangleright reparametrisation helps to understand effect of prior-data conflict:

$$
n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \qquad \text{which are updated as}
$$

$$
n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}
$$

What if expert information and data tell different stories?

 \blacktriangleright reparametrisation helps to understand effect of prior-data conflict:

$$
n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \qquad \text{which are updated as}
$$

$$
n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}
$$

$$
y^{(0)} = E[p]
$$

What if expert information and data tell different stories?

 \blacktriangleright reparametrisation helps to understand effect of prior-data conflict:

$$
n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \qquad \text{which are updated as}
$$

$$
n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n}y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}
$$

$$
y^{(0)} = E[p] \quad y^{(n)} = E[p \mid s]
$$

What if expert information and data tell different stories?

 \blacktriangleright reparametrisation helps to understand effect of prior-data conflict:

$$
n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \qquad \text{which are updated as}
$$
\n
$$
n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}
$$
\n
$$
y^{(0)} = E[p] \quad y^{(n)} = E[p \mid s] \quad \text{ML estimator } \hat{p}
$$

What if expert information and data tell different stories?

 \blacktriangleright reparametrisation helps to understand effect of prior-data conflict:

What if expert information and data tell different stories?

 \triangleright reparametrisation helps to understand effect of prior-data conflict:

What if expert information and data tell different stories?

 \blacktriangleright reparametrisation helps to understand effect of prior-data conflict:

Add imprecision as new modelling dimension: Sets of priors. . .

... model uncertainty in probability statements

Add imprecision as new modelling dimension: Sets of priors. . .

... model uncertainty in probability statements

Uncertainty about probability statements

smaller sets = more precise probability statements

Lottery A Number of winning tickets: exactly known as 5 out of 100 $P(\text{win}) = 5/100$

Lottery B

Number of winning tickets: not exactly known, supposedly b[etween](#page-57-1) 1 and 7 out of 100 \blacktriangleright *P*(win) = [1/100, 7/100]

- ... model uncertainty in probability statements
- \dots allow for partial or vague information on p_t^{k} 's

- ... model uncertainty in probability statements
- \dots allow for partial or vague information on p_t^{k} 's
- ... highlight prior-data conflict.

Add imprecision as new modelling dimension: Sets of priors. . .

- ... model uncertainty in probability statements
- \dots allow for partial or vague information on p_t^{k} 's
- ... highlight prior-data conflict.
- ► Separate uncertainty *whithin the model* (reliability statements) from uncertainty *about the model* (which parameters).

- ... model uncertainty in probability statements
- \dots allow for partial or vague information on p_t^{k} 's
- ... highlight prior-data conflict.
- ► Separate uncertainty *whithin the model* (reliability statements) from uncertainty *about the model* (which parameters).
- \triangleright Systematic sensitivity analysis / robust Bayesian approach

- . . . model uncertainty in probability statements
- \dots allow for partial or vague information on p_t^{k} 's
- ... highlight prior-data conflict.
- ► Separate uncertainty *whithin the model* (reliability statements) from uncertainty *about the model* (which parameters).
- \triangleright Systematic sensitivity analysis / robust Bayesian approach
- \blacktriangleright Walter and Augustin [\(2009\)](#page-57-2), Walter [\(2013\)](#page-57-1): vary $(n^{(0)},y^{(0)})$ in a set $\qquad{}=[\underline{n}^{(0)},\overline{n}^{(0)}]\times[y^{(0)},\overline{y}^{(0)}]$
	- \triangleright easy elicitation, tractability & prior-data conflict sensitivity

- ... model uncertainty in probability statements
- \dots allow for partial or vague information on p_t^{k} 's
- ... highlight prior-data conflict.
- ► Separate uncertainty *whithin the model* (reliability statements) from uncertainty *about the model* (which parameters).
- \triangleright Systematic sensitivity analysis / robust Bayesian approach
- \blacktriangleright Walter and Augustin [\(2009\)](#page-57-2), Walter [\(2013\)](#page-57-1): vary $(n^{(0)},y^{(0)})$ in a set $\qquad{}=[\underline{n}^{(0)},\overline{n}^{(0)}]\times[y^{(0)},\overline{y}^{(0)}]$
	- \triangleright easy elicitation, tractability & prior-data conflict sensitivity
- Bounds for inferences (point estimate, prediction, \dots) by min/max over

Component Reliability with Sets of Priors

Component Reliability with Sets of Priors

6/11

Component Reliability with Sets of Priors

 \triangleright Closed form for the system reliability via the survival signature:

$$
R_{\text{sys}}(t \mid \bigcup_{k=1}^{K} \{ n_{k,t}^{(0)}, y_{k,t'}^{(0)}, t^k \} \right) = P(T_{\text{sys}} > t \mid \cdots)
$$

=
$$
\sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \ldots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t'}^{(0)}, y_{k,t'}^{(0)}, t^k)
$$

 \triangleright Closed form for the system reliability via the survival signature:

$$
R_{\text{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\text{sys}} > t \mid \cdots)
$$
\n
$$
= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \ldots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})
$$
\nsurvival signature $\Phi(l_1, \ldots, l_K)$

\n(Coolen and Coolen-Maturi 2012)

\n
$$
= P(\text{system functions} \mid \{l_k \mid \mathbf{k} \mid \text{s function}\}^{1:K})
$$
\n
$$
\frac{l_1}{0} \quad \frac{l_2}{0} \quad \frac{l_3}{1} \quad \frac{l_2}{0} \quad \frac{l_1}{0} \quad \frac{l_2}{1} \quad \frac{l_3}{1} \quad \frac{l_0}{1} \quad \frac{l_1}{2/3}
$$
\n
$$
= \frac{l_1}{0} \quad \frac{l_2}{1} \quad \frac{l_3}{1} \quad \frac{l_1}{1} \quad \frac{l_2}{2/3}
$$
\n
$$
= \frac{l_1}{0} \quad \frac{l_1}{1} \quad \frac{l_2}{1} \quad \frac{l_3}{1} \quad \frac{l_1}{1} \quad \frac{l_2}{1} \quad \frac{l_3}{1} \quad \frac{l_1}{1} \quad \frac{l_1}{1} \quad \frac{l_2}{1} \quad \frac{l_1}{1} \quad \frac{l_1}{1} \quad \frac{l_2}{1} \quad \frac{l_1}{1} \quad \frac
$$

 \triangleright Closed form for the system reliability via the survival signature:

$$
R_{\text{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\text{sys}} > t \mid \cdots)
$$
\n
$$
= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})
$$
\nSurvival signature $\Phi(l_1, \dots, l_K)$

\n(Coolen and Coolen-Maturi 2012)

\n
$$
= P(\text{system functions} \mid \{l_k \mid k \text{ s function}\}^{1:K})
$$
\n
$$
\frac{l_1 \quad l_2 \quad l_3 \mid \Phi}{0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0}
$$
\n
$$
\frac{l_1 \quad l_2 \quad l_3 \mid \Phi}{0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0}
$$
\n
$$
\frac{1}{1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0}
$$
\n
$$
\frac{1}{1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0}
$$
\n
$$
\frac{1}{1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1}
$$
\n
$$
\frac{1}{1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1}
$$

 \triangleright Closed form for the system reliability via the survival signature:

$$
R_{\text{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\text{sys}} > t \mid \cdots)
$$
\n
$$
= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \ldots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})
$$
\nSurvival signature $\Phi(l_1, \ldots, l_K)$

\n
$$
= P(\text{system functions} \mid \{l_k \mid k \mid \text{s function}\}^{1:K})
$$
\n
$$
= P(\text{system functions} \mid \{l_k \mid k \mid \text{s function}\}^{1:K})
$$
\n
$$
\frac{l_1 \quad l_2 \quad l_3 \mid \Phi}{0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0}
$$
\n
$$
= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}
$$

 \triangleright Closed form for the system reliability via the survival signature:

$$
R_{\text{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\text{sys}} > t \mid \cdots)
$$
\n
$$
= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \ldots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})
$$
\nsurvival signature $\Phi(l_1, \ldots, l_K)$

\n(Coolen and Coolen-Maturi 2012)

\n
$$
= P(\text{system functions} \mid \{l_k \mid \mathbf{k} \mid \text{s function}\}^{1:K})
$$
\n
$$
\frac{l_1 \quad l_2 \quad l_3 \mid \Phi}{0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0}
$$
\n
$$
= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 2 & 0 & 1 & 1/3 \quad 2 & 1 \quad 1 \\ 3 & 0 & 1 & 1 & 4 & 1 \quad 1 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}
$$

 \triangleright Closed form for the system reliability via the survival signature:

$$
R_{\text{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\text{sys}} > t \mid \cdots)
$$
\n
$$
= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \ldots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})
$$
\nsurvival signature $\Phi(l_1, \ldots, l_K)$

\n(Coolen and Coolen-Maturi 2012)

\n
$$
= P(\text{system functions} \mid \{l_k \mid \mathbf{k} \mid \text{s function}\}^{1:K})
$$
\n
$$
\frac{l_1 \quad l_2 \quad l_3 \mid \Phi}{0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0}
$$
\n
$$
= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}
$$
\n
$$
\frac{1}{0} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}
$$

 \triangleright Closed form for the system reliability via the survival signature:

$$
R_{\text{sys}}(t \mid \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k}\}) = P(T_{\text{sys}} > t \mid \cdots)
$$
\n
$$
= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^{k})
$$
\nSurvival signature $\Phi(l_1, \dots, l_K)$

\n(Coolen and Coolen-Maturi 2012)

\n
$$
= P(\text{system functions} \mid \{l_k \mid \mathbf{k} \mid \text{s function}\}^{1:K})
$$
\n
$$
\frac{l_1 \quad l_2 \quad l_3 \mid \Phi}{0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0}
$$
\n
$$
= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}
$$

 \triangleright Closed form for the system reliability via the survival signature:

*R*sys *t* | S*^K k*=1 n *n* (0) *k*,*t* , *y* (0) *k*,*t* , t *k* o = *P*(*T*sys > *t* | · · ·) = X*m*1 *l*1=0 · · ·X*m^K lK*=0 Φ(*l*1, . . . , *lK*) Y *K k*=1 *P*(*C k ^t* = *l^k* | *n* (0) *k*,*t* , *y* (0) *k*,*t* , t *k*) Survival signature Φ(*l*1, . . . , *lK*) (Coolen and Coolen-Maturi [2012\)](#page-57-3) = *P*(system functions | {*l^k* k 's function} 1:*K*) *l*¹ *l*² *l*³ Φ 0 0 1 0 1 0 1 0 2 0 1 1/3 3 0 1 1 4 0 1 1 *l*¹ *l*² *l*³ Φ 0 1 1 0 1 1 1 0 2 1 1 2/3 3 1 1 1 4 1 1 1 ✓ ✓ ✗ ✗ ✗ ✗ 1 1 1 1 2 3

 \triangleright Closed form for the system reliability via the survival signature:

lK=0

$$
R_{\text{sys}}(t \mid \bigcup_{k=1}^{K} \{ n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k \} \big) = P(T_{\text{sys}} > t \mid \cdots)
$$

=
$$
\sum_{k=1}^{m_1} \cdots \sum_{k=1}^{m_K} \Phi(l_1, \ldots, l_K) \prod_{k=1}^{K} P(C_t^k = l_k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k)
$$

Survival signature Φ(*l*1, . . . , *lK*) (Coolen and Coolen-Maturi [2012\)](#page-57-3) $= P(\textsf{system functions} \mid \{l_k \mid \mathbf{k}\})$'s function $\}^{1:K})$ $\frac{l_2 \quad l_3 \quad \Phi}{0 \quad 1 \quad 0}$ $0 \t 0 \t 1 \t 0$ 1 0 1 0 2 0 1 1/3 3 0 1 1 4 0 1 1 l_2 l_3 Φ 0 1 1 0 1 1 1 0 2 1 1 2/3 3 1 1 1 4 1 1 1

 $\overline{l_1=0}$

Posterior predictive probability that in a new system, l_k of the m_k k 's function at time *t*:

$$
{m_k \choose l_k} \int [P(T < t \mid p_t^k)]^{l_k}
$$
\n
$$
[P(T \ge t \mid p_t^k)]^{m_k - l_k}
$$
\n
$$
f(p_t^k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k) \, dp_t^k
$$

k=1

 \blacktriangleright analytical solution for integral: $C_t^k \mid n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k$ ∼ Beta-binomial

► Bounds for
$$
R_{sys}(t | \bigcup_{k=1}^{K} \{n_{k,t}^{(0)}, y_{k,t}^{(0)}, t^k\})
$$
 over $\bigcup_{k=1}^{K} \{-1\}$:

 \blacktriangleright min $R_{\texttt{sys}}(\cdot)$ by $y^{(0)}_{k,t}$ $y_{k,t}^{(0)} = y_{k,t}^{(0)}$ $\binom{(0)}{k,t}$ for any $n^{(0)}_{k,t}$ *k*,*t* (Walter, Aslett, and Coolen [2016,](#page-57-4) Theorem 1)

Bounds for $R_{\text{sys}}(t \mid \bigcup_{k=1}^{K}$ *k*=1 $\{n_{k}^{(0)}\}$ *k*,*t* , *y* (0) $\left\{\begin{matrix} (0) \\ k,t \end{matrix}\right\}$ over $\bigcup\limits_{k=1}^K$ *k*=1 $\begin{cases} \end{cases}$ o :

- \blacktriangleright min $R_{\texttt{sys}}(\cdot)$ by $y^{(0)}_{k,t}$ $y_{k,t}^{(0)} = y_{k,t}^{(0)}$ $\binom{(0)}{k,t}$ for any $n^{(0)}_{k,t}$ *k*,*t* (Walter, Aslett, and Coolen [2016,](#page-57-4) Theorem 1)
- $\blacktriangleright \ \min R_{\mathsf{sys}}(\cdot)$ for $\underline{\eta}_{k,t}^{(0)}$ $_{k,t}^{(0)}$ or $\overline{n}_{k,t}^{(0)}$ $\frac{d^{(0)}}{k,t}$ according to simple conditions (Walter, Aslett, and Coolen [2016,](#page-57-4) Theorem 2 & Lemma 3)

Bounds for $R_{\text{sys}}(t \mid \bigcup_{k=1}^{K}$ *k*=1 $\{n_{k}^{(0)}\}$ *k*,*t* , *y* (0) $\left\{\begin{matrix} (0) \\ k,t \end{matrix}\right\}$ over $\bigcup\limits_{k=1}^K$ *k*=1 $\begin{cases} \end{cases}$ o :

- \blacktriangleright min $R_{\texttt{sys}}(\cdot)$ by $y^{(0)}_{k,t}$ $y_{k,t}^{(0)} = y_{k,t}^{(0)}$ $\binom{(0)}{k,t}$ for any $n^{(0)}_{k,t}$ *k*,*t* (Walter, Aslett, and Coolen [2016,](#page-57-4) Theorem 1)
- $\blacktriangleright \ \min R_{\mathsf{sys}}(\cdot)$ for $\underline{\eta}_{k,t}^{(0)}$ $_{k,t}^{(0)}$ or $\overline{n}_{k,t}^{(0)}$ $\frac{d^{(0)}}{k,t}$ according to simple conditions (Walter, Aslett, and Coolen [2016,](#page-57-4) Theorem 2 & Lemma 3)
- **numeric optimization over** $[n_{k,t}^{(0)}]$ $\frac{1}{k}$, $\frac{n}{n}$, $\frac{n}{k}$, t $\binom{[0]}{k,t}$ in the very few cases where Theorem 2 & Lemma 3 do not apply

Bounds for $R_{\text{sys}}(t \mid \bigcup_{k=1}^{K}$ *k*=1 $\{n_{k}^{(0)}\}$ *k*,*t* , *y* (0) $\left\{\begin{matrix} (0) \\ k,t \end{matrix}\right\}$ over $\bigcup\limits_{k=1}^K$ *k*=1 $\begin{cases} \end{cases}$ o :

- \blacktriangleright min $R_{\texttt{sys}}(\cdot)$ by $y^{(0)}_{k,t}$ $y_{k,t}^{(0)} = y_{k,t}^{(0)}$ $\binom{(0)}{k,t}$ for any $n^{(0)}_{k,t}$ *k*,*t* (Walter, Aslett, and Coolen [2016,](#page-57-4) Theorem 1)
- $\blacktriangleright \ \min R_{\mathsf{sys}}(\cdot)$ for $\underline{\eta}_{k,t}^{(0)}$ $_{k,t}^{(0)}$ or $\overline{n}_{k,t}^{(0)}$ $\frac{d^{(0)}}{k,t}$ according to simple conditions (Walter, Aslett, and Coolen [2016,](#page-57-4) Theorem 2 & Lemma 3)
- **numeric optimization over** $[n_{k,t}^{(0)}]$ $\frac{1}{k}$, $\frac{n}{n}$, $\frac{n}{k}$, t $\binom{[0]}{k,t}$ in the very few cases where Theorem 2 & Lemma 3 do not apply
- \triangleright implemented in **R** package ReliabilityTheory (Aslett [2016\)](#page-57-5)

System Reliability Bounds

Summary:

- Nonparametric modeling of component reliability curves
- Bayesian model combining expert knowledge and test data
- Set of system reliability functions reflects uncertainties from limited data, vague expert information, and prior-data conflict
- ► Easy-to-use implementation in **R** package ReliabilityTheory (Aslett [2016\)](#page-57-5)

Summary:

- \triangleright Nonparametric modeling of component reliability curves
- \triangleright Bayesian model combining expert knowledge and test data
- Set of system reliability functions reflects uncertainties from limited data, vague expert information, and prior-data conflict
- ► Easy-to-use implementation in **R** package ReliabilityTheory (Aslett [2016\)](#page-57-5)

Next steps:

- \blacktriangleright Allow right-censored observations (RUL estimation)
- \blacktriangleright Allow dependence between components (common-cause failure, . . .)
- \triangleright Use for system design (where to put extra redundancy?)
- \blacktriangleright Use for maintenance planning

References

Aslett, Louis (2016). *ReliabilityTheory: Tools for structural reliability analysis*. R package. URL: <http://www.louisaslett.com>. Coolen, Frank and Tahani Coolen-Maturi (2012). "Generalizing the Signature to Systems with Multiple Types of Components". In: *Complex Systems and*

Dependability. Ed. by W. Zamojski et al. Vol. 170. Advances in Intelligent and Soft **Computing. Springer, pp. 115–130.** DOI: $10.1007/978-3-642-30662-4$ 8.

Evans, Michael and Hadas Moshonov (2006). "Checking for Prior-Data Conflict". In: *Bayesian Analysis* 1, pp. 893–914. URL:

<http://projecteuclid.org/euclid.ba/1340370946>.

Walter, Gero (2013). "Generalized Bayesian Inference under Prior-Data Conflict". PhD thesis. Department of Statistics, LMU Munich. URL:

<http://edoc.ub.uni-muenchen.de/17059/>.

Walter, Gero, Louis Aslett, and Frank Coolen (2016). "Bayesian Nonparametric System Reliability using Sets of Priors". Submitted to *International Journal of Approximate Reasoning*. URL: <http://arxiv.org/abs/1602.01650>. Walter, Gero and Thomas Augustin (2009). "Imprecision and Prior-data Conflict in Generalized Bayesian Inference". In: *Journal of Statistical Theory and Practice* 3,

pp. 255–271. DOI: [10.1080/15598608.2009.10411924](http://dx.doi.org/10.1080/15598608.2009.10411924).

