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Bernoulli Data and Prior-Data Conflict
Bernoulli Data

I Bernoulli observations are 0/1 observations
(head/tails when tossing a coin)

I given: a set of observations
(12 out of 16 tosses were heads)

I additional to observations, we have strong
prior information (we are convinced that
P (heads) should be around 0.75)

I interested in probability P that the next ob-
servation is a head. (predictive probability!)

The Beta-Bernoulli/Binomial Model (BBM)
(in Walley’s parametrization)

data : s ∼ Binom(p, n)

conjugate prior: p ∼ Beta(n(0), y(0))

posterior: p | s ∼ Beta(n(n), y(n))

y(n) =
n(0)

n(0) + n
· y(0) + n

n(0) + n
· s
n
= P ,

n(n) = n(0) + n .

Prior-Data Conflict
If P (heads) = p for the coin is actually very dif-
ferent from our prior guess y(0) (i.e., prior in-
formation and data are in conflict), this should
show up in the predictive inferences (probabil-
ity P and, e.g., confidence intervals). However, as

Var(p | s) = y(n)(1− y(n))
n(n) + 1

,

a systematic reaction to prior-data conflict is not
possible for the BBM.

Beta-Binomial Model (BBM)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n(0) resp. n(n)

y
(0

)
re

sp
.y

(n
) 12 out of 16

16 out of 16

n(0) = 8

y(0) = 0.75

s/n = 12/16 = 0.75
H

n(n) = 24

y(n) = 0.75

N
s/n = 16/16 = 1

n(0) = 8

y(0) = 0.25

Imprecise BBM =̂ IDM (Walley 1996)
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pdc-Imprecise BBM (Walley 1991)
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posterior parameter set

=
{
(n(n), y(n)) | n(0)∈[n(0), n(0)], y(0)∈[y(0), y(0)]

}

Anteater Shape
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posterior param. set =
{
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}
Anteater sets are derived by a thought experi-
ment on the effect of hypothetical observations.

Weighted Inference
Combine predictive inferences of

1. an uninformative model I [Pu,P
u
]

from, e.g., a near-ignorance prior, here:

n(0) = 1, y(0) ∈ [0, 1]

2. an informative model I [Pi, P
i
]

from, e.g., an informative prior, here:

n(0) = ni + 1, y(0) ∈
[

si

ni+1
, si+1
ni+1

]
by weighing them imprecisely:

P = min
α∈[αl,αr]

Pα, where Pα = αPi + (1− α)Pu

P = max
α∈[αl,αr]

Pα, where Pα = αP
i
+ (1− α)Pu

For α ∈ [0, 1], the same inference as for a pdc-
IBBM result, where the prior parameter set con-
sists of the union of the parameter sets of unin-
formative and informative model.

Predictive Probability Plots (PPP)
The Predictive Probability Plot (PPP) displays
[P,P] as a function of s, indicating how impre-
cision increases in case of prior-data conflict.

PPP for pdc-IBBM
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PPP for the Anteater Shape
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PPP for Weighted Inference
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Generalizations
In principal, any prior set shape is possible, lead-
ing to different behaviour, e.g., a certain number
of slopes in the PPP. Sets of BBMs can be gen-
eralized to any distribution from an exponential

family, as those have the same weighted aver-
age structure for y(n) (Quaghebeur & de Cooman
2005). A generalization of pdc-IBBM along this
lines was presented in (Walter & Augustin 2009).

Generalizations
The method can be used to combine any two
predictive inferences, from any model, on any
event of interest. A possible source for Pu/Pi is,
e.g., the NPI model (Coolen & Augustin 2009).
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