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I iLUCK-models are a generalization of the IDM to arbitrary
sample distributions that form a so-called exponential family.

I iLUCK-models offer a general, manageable and powerful
calculous for Bayesian inference with sets of priors.

I However, they are insensitive to prior-data conflict and thus
do not use the full expressive power of imprecise probability.

I Generalized iLUCK-models extend iLUCK-models such that
prior-data conflict is accounted for.

I A basic framework for display and updating of generalized
iLUCK-models is implemented in the statistical software
environment R.

I The framework can be easily extended to give inferences for
arbitrary sample distributions.
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Generalized Bayesian Inference – General Idea
Bayesian Inference on some parameter θ:

prior knowledge on θ data x I updated knowledge on θ

prior distribution p(θ)
likelihood
f(x | θ) I

posterior distribution
p(θ | x)

set of priors likelihood I set of posteriors

Tractability: use conjugate priors, i.e.
choose p(θ) such that p(θ | x) is from the same parametric class

I update only parameters!



LUCK-models: Single Conjugate Prior

X
iid∼ linear, canonical exponential family, i.e.

p(x | θ) ∝ exp
{
〈ψ, τ(x)〉 − nb(ψ)

} [
ψ transformation of θ

]
(includes Binomial, Multinomial, Normal, Poisson,. . . distr.)

I conjugate prior:

p(θ) ∝ exp
{
n(0)

[
〈ψ, y(0)〉 − b(ψ)

]}
I (conjugate) posterior:

p(θ | x) ∝ exp
{
n(1)

[
〈ψ, y(1)〉 − b(ψ)

]}

where y(1) =
n(0)y(0) + τ(x)

n(0) + n
and n(1) = n(0) + n .



Interpretation of y(0) and n(0)

y(0): “main prior parameter”

I for samples from a N(µ, 1), p(µ) is a N(y(0), 1
n(0) )

I for samples from a M(θ), p(θ) is a Dir(n(0), y(0))
(y

(0)
j = tj=̂ prior probability for class j, n(0) = s)

n(0): “prior strength” or “pseudocounts”

with τ̃(x) =: 1
nτ(x):

[
τ(x) =

∑n
i=1 τ(xi)

]
y(1) =

n(0)

n(0) + n
· y(0) +

n

n(0) + n
· τ̃(x) .



sets of LUCK-models – iLUCK-models
iLUCK-model:
(inspired by Quaeghebeur and de Cooman, 2005)

vary y(0) in Y(0)
[
Y(0) convex

]
,

i.e. allow for ambiguity on the main prior parameter

I prior credal set contains all finite convex mixtures of p(θ)s
with y(0) ∈ Y(0)

I posterior credal set easy to calculate:
all finite convex mixtures of p(θ | x)s with

y(1) ∈ Y(1) =
n(0)

n(0) + n
· Y(0) +

n

n(0) + n
· τ̃(x)

{
(n(1), y(1))|n(1)=n(0)+n, y(1)=

n(0)y(0)+τ(x)

n(0)+n
, y(0)∈Y(0)

}

��AA! unfavourable behavior in case of prior–data conflict! ��AA!



Prior-Data Conflict
Situation in which informative prior beliefs
and trusted data (no outliers, etc.) are in conflict

Example: (Walley 1991)

Data : X ∼ N(ϑ, 1)
conjugate prior: ϑ ∼ N(µ, 1)

posterior: ϑ | x ∼ N

(
µ+ x

2
,

1
2

)
I Case (i): µ = 5.5, x = 6.5 =⇒ ϑ ∼ N(6, 1

2)
I Case (ii): µ = 3.5, x = 8.5 =⇒ ϑ ∼ N(6, 1

2)

��AA! In Bayesian analysis all inference is based only on the posterior!



Prior-Data Conflict in iLUCK-models

y(1) − y(1) =
n(0)y(0) + τ(x)

n(0) + n
−
n(0)y(0) + τ(x)

n(0) + n
=
n(0)(y(0) − y(0))

n(0) + n

I Posterior imprecision does not depend on τ(x)!

For any sample of size n, posterior imprecision
is reduced by the same amount!



sets of LUCK-models – Generalized iLUCK-models
generalized iLUCK-model:

vary y(0) in Y(0) and n(0) in N (0), i.e. weigh prior information Y(0)

and sample information τ̃(x) more flexible in

y(1) =
n(0)

n(0) + n
· y(0) +

n

n(0) + n
· τ̃(x)

I prior credal set contains all finite convex mixtures
of p(θ)s with y(0) ∈ Y(0) and n(0) ∈ N (0)

I posterior credal set still quite easy to calculate:
all finite convex mixtures of p(θ | x)s with{(

n(1), y(1)
)∣∣∣n(1) = n(0) + n, y(1) =

n(0)y(0) + τ(x)
n(0) + n

, n(0) ∈ N (0), y(0) ∈ Y(0)

}

Defines a general framework for two models proposed by Walley
(1991) for Binomial and scaled Normal data.



Example: samples from a N(µ, 1)

likelihood p(x | θ) ∝ exp
{
− 1

2

∑n
i=1(xi − µ)2

}
∝ exp

{
µ︸︷︷︸

=ψ

∑n
i=1 xi︸ ︷︷ ︸
τ(x)

− µ2

2︸︷︷︸
=b(ψ)

}
conjugate prior p(θ) ∝ exp

{
n(0)

[
〈µ, y(0)〉 − µ2

2

]}
∝ exp

{
− n(0)

2

(
µ− y(0)

)2} ∝ N(y(0),
1
n(0)

)



iLUCK-model
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generalized iLUCK-model
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Example: samples from a M(θ)
I θ ∼ Dir(n(0),y(0)) J I Imprecise Dirichlet Model (IDM)

(y
(0)
j = tj=̂ prior probability for class j, n(0) = s)

I Walley (JRSS, 1991), Bernard (IJAR Special Issue, 2009)
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iLUCK-model J I IDM
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generalized iLUCK-modelJ I generalized IDM
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The R project for Statistical Computing
I not just a (statistical) software package,

rather a full-grown programming language
I open source implementation of the (award-winning) S

language
I extremely widespread in universitary research

(reference implementation of new methods are often in R)
I extensions providing additional functionality can be made

readily available as “packages”
I can be linked with LATEX (package Sweave)
I can be used as imperative or as object-oriented language



Imperative vs. Object-oriented Programming
imperative: do this, then that

I functions (on arguments)

object-oriented: create ‘objects’, do things with them
I blueprints for objects called ‘classes’

objects created according to a blueprint are called an ‘instance’

example:
banking company administrating their customers’ accounts

class: BankAccount
instances: bank account for customer A

bank account for customer B
...



Object-oriented Programming: Class hierarchies

Some Class

‘slots’ (attributes)

‘methods’ (functions)

Subclass

additional/specialized slots

additional/specialized methods

extends Some Class
inherits slots & methods

Subsubclass 2
add./spec. slots

add./spec. methods

Subsubclass 1
add./spec. slots

add./spec. methods

Subsubclass 3
add./spec. slots

add./spec. methods



Implementation – Class Structure

Implemented class structure maps the hierarchy of the model:

LuckModel

n0: matrix
y0: matrix
data: LuckModelData

show()
plot()
unionHdi()

...

ScaledNormalLuckModel

singleHdi()

PoissonLuckModel

singleHdi()

. . .

singleHdi()



LuckModelData

tauN: matrix
rawData: matrix

show()

PoissonData

show()

ScaledNormalData

show()

. . .

show()



Code Example
> ex1 <- LuckModel(n0=c(1,10), y0= c(0,5))

> ex1

generalized iLUCK model with prior parameter set:

lower n0 = 1 upper n0 = 10

lower y0 = 0 upper y0 = 5

giving a main parameter prior imprecision of 5

> data1 <- LuckModelData(tau=11, n=2)

> data1

data object with sample statistic tau(x) = 11 and sample size n = 2

> ex2 <- ScaledNormalLuckModel(n0=c(1,2), y0=c(3,4), data=rnorm(mean=4,

sd=1, n=10))

> ex2

generalized iLUCK model for inference from scaled normal data

with prior parameter set:

lower n0 = 1 upper n0 = 2

lower y0 = 3 upper y0 = 4

giving a main parameter prior imprecision of 1

corresponding to a set of normal priors

with means in [ 3 ; 4 ] and variances in [ 0.5 ; 1 ]

and ScaledNormalData object containing data of sample size 10

with mean 4.170152 and variance 0.6234904 .
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