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Abstract

We propose a new condition-based maintenance policy for complex systems,
based on the status (working, defective) of all components within a system, as
well as the reliability block diagram of the system. By means of the survival
signature, a generalization of the system signature allowing for multiple compo-
nent types, we obtain a predictive distribution for the system survival time, also
known as residual life distribution, based on which of the system’s components
currently function or not, and the current age of the functioning components.

The time to failure of the components of the system is modeled by a Weibull
distribution with a fixed shape parameter. The scale parameter is iteratively
updated in a Bayesian fashion using the current (censored and non-censored)
component lifetimes. Each component type has a separate Weibull model that
may also include test data.

The cost-optimal moment of replacement for the system is obtained by mini-
mizing the expected cost rate per unit of time. The unit cost rate is recalculated
when components fail or at the end of every (very short) fixed inter-evaluation
interval, leading to a dynamic maintenance policy, since the ageing of compo-
nents and possible failures will change the cost-optimal moment of replacement
in the course of time. Via numerical experiments, some insight into the perfor-
mance of the policy is given.

Keywords: condition-based maintenance, system reliability, remaining useful
life, survival signature, unit time cost rate

1. Introduction

Both in practice and academics, there is a growing interest in condition-
based maintenance (CBM), see e.g., Olde Keizer et al. (2017) The central idea
behind CBM is to maintain systems or components at exactly the right time,
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i.e., just before they fail, in order to keep their reliability high and operat-
ing costs low, using information about the actual condition of the systems or
components. In this context a trade-off is made between the risk of failure
during operation (which can lead to costly downtime: idle workforce, missed
production, penalties, loss of reputation) and the costs of premature mainte-
nance (wasting potential component or system lifetime, downtime cost, cost of
executing unnecessary maintenance activities).

Among the reasons for the above interest are the importance of increasingly
short and reliable delivery times, and decreasing profit margins due to world-
wide competition. All kinds of technical improvements have made it possible to
estimate the condition of systems as a whole as well as their underlying compo-
nents, whereas the cost for these technologies is decreasing rapidly, making the
use of CBM policies even more feasible.

Most CBM policies are based on a directly observable, continuously mea-
surable condition or degradation signal, e.g., the amount of vibration in case of
rotating equipment. Alternatively, such a signal or health status is constructed
using indirect measurements to determine the remaining useful life or time to
failure of a system, see, e.g., Ahmadzadeh and Lundberg (2014); Si et al. (2011).

In this paper, we propose a new kind of CBM policy for when no such usual
degradation signal for the system is available, but where the status (working
or not working) of the system’s components can be monitored (quasi-) continu-
ously. In this situation, one can use the system’s reliability block diagram and
information with respect to the status of its components to directly calculate
the system residual life distribution (RLD), and base the maintenance policy
for the system on this distribution. In fact, our CBM policy can also be seen
as based on a multivariate degradation signal, where each component sends a
binary signal, and the reliability block diagram is used for sensor fusion.

To calculate the system RLD, we use the survival signature, which allows
to deal with different types of components each having an individual failure
time model (see Section 3). Here we assume that components of different types
fail independently, and that failure times of components of the same type are
independent given the model parameters.

In our new policy, there are three types of triggers to review the system: (1)
at the end of each very short time interval δ (where δ is very short compared to
the lifetimes of components), (2) directly after the failure of a component where
the system still functions, and (3) directly after the failure of a component due
to which the system as a whole no longer can function. We denote each review of
the system in reaction to triggers (1) and (2) by ‘evaluation’, since the system
RLD is re-evaluated at each of these time points, and a decision is made on
whether preventive maintenance should be carried out or not. We use the term
‘evaluation’ in place of the term ‘inspection’, because the re-evaluation of the
system RLD does not require a physical inspection, as we assume to learn of the
exact failure times of components online via (quasi-) continuous monitoring.

In case of a trigger of type (1), the currently used models for component
failure times are updated to account for the extra lifetime observed for the com-
ponents. This information is taken into account via right-censored observations
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in a Bayesian parameter update step. In case of a trigger of type (2), where
a component has failed but the system is still functioning, in addition to the
component models also the reliability block diagram of the system is updated.
Based on the above changes, it is determined in both cases whether the system
should be replaced now, or that this decision should be postponed until the next
planned evaluation moment, accepting the risk of a system breakdown before.
To determine the latter, we calculate the ‘optimal’ next evaluation moment
based on minimizing the expected maintenance-related cost per unit of time for
the present operational cycle. An operational cycle spans the time between two
consecutive system maintenance actions. We assume that in both preventive
and corrective maintenance, the entire system is replaced or brought to an as
good as new state, and thus optimize the unit cost rate calculated over the time
since the last system replacement.

When the ‘optimal’ next evaluation moment is before the next planned eval-
uation moment, we replace the system now; else we wait for the next planned
evaluation moment. The reason behind this decision is that δ is taken as the
shortest inter-evaluation period that can be realized from a hardware point of
view. To illustrate, for components with lifetimes amounting to a few days, δ
could be in the order of minutes; for components with lifetimes measuring in
months, δ could be one day.

Note that strictly speaking, this decision procedure may not be optimal.
However, because δ is very small when compared to the prior estimates of the
lifetime of the components, at the time that the next ‘optimal’ evaluation mo-
ment is before the next planned evaluation moment, we usually already have
done much better than without updating as described in this paper.

In this context it is also important to realize that our method doesn’t nec-
essarily result in the actual optimal replacement solution for another reason,
inherent to using updated information for decisions, when these updates can
indicate that the former estimates were too optimistic or too pessimistic. The
reason for this is that for some components, a too pessimistic prior probability
density function (pdf) may lead to an increase in system reliability over time
without any intervention. Whether or not this will be the case, as well as until
when this kind of increase can occur, is uncertain at every moment in time.
As a sidenote, this kind of uncertainty about the probabilistic behaviour itself
is very often neglected in operations research literature. Determining the next
‘optimal’ evaluation moment can thus only indicate whether or not waiting with
the replacement may result in lower or higher cost per unit of time, i.e., only
indicates a local optimum, but not necessarily a global one.

In case of a trigger of type (3), where the failure of a component leads to the
whole system failing, the currently used component failure time distributions are
updated like in case of a trigger of type (1) and (2) to account for the information
gained on components until the moment of system failure. Hereafter, a new
system is installed, using the updated models for all components based on the
insight obtained from the finished operational cycles so far.

At first sight, the above quasi-continous updating of the component failure
models, and the system reliability block diagram, as well as redetermining the
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best moment to replace the system, seems to result in a (very) nervous mainte-
nance policy. However, due to the very short calculation times, only at certain
moments in time people involved in the execution of maintenance tasks need
to receive detailed information, whereas during the remaining time, all can be
handled automatically, as currently done within, e.g., many safety systems.

The setup of the rest of the paper is as follows. In Section 2, we describe
our contribution to the CBM literature. Next, in Sections 3, 4 and 5, the three
main steps in our policy are discussed in detail. Hereafter, in Sections 6 and
7, our policy is applied further to an example. Finally, in Section 8, a short
summary and our main conclusions are given, followed by some suggestions for
further research.

2. Literature review

Although there is a lot of literature on CBM policies for multi-component
systems, see, e.g., Olde Keizer et al. (2017), we found only a few papers having
some relation to our approach.

The paper that comes closest to this paper is the paper by Si et al. (2013).
In that paper, the condition of a system is inspected, where the moment of
the next inspection is determined via an updated degradation path based on
the present condition of the system. The authors provide exact expressions for
the RLD, also known as RUL (remaining useful lifetime) distribution, which is
updated in an empirical Bayesian framework using conjugate priors. The RLD
is used to construct a replacement decision model using a cost rate.

While we also use a Bayesian approach with conjugate priors to provide exact
expressions for the RLD, one of the main differences between Si et al. (2013)
and our paper is that we use component status data and the system reliability
block diagram instead of a continuous degradation signal as basis for calculating
the system RLD. Another main difference is that our policy can be applied to
arbitrary system configurations (i.e., arbitrary reliability block diagrams with
arbitrary components), whereas the method given by Si et al. (2013) can only
be applied to single components. A third difference concerns how the cost rate
is calculated. Si et al. (2013) calculate this rate using the renewal-reward theory
approximation. Essential for using the renewal-reward theory for calculating the
expected cost per unit of time is that the relevant characteristics of the system
considered and its environment are not changing, i.e. that the failure behavior
of the system, in essence its reliability function, does not change over time, and
that the same policy with the same parameter values is used for a statistically
long enough period of time. However, due to the update method related to the
CBM policy presented in this paper, we cannot use the renewal-reward theory
based calculation method, and therefore use the exact formula for the average
cost per unit of time.

Another paper that includes some of the aspects covered in our paper is the
paper by Sun et al. (2012). The authors construct a health index for a system
based on sensor measurements, where the health status prediction is updated
sequentially, resulting in a RUL distribution like with our method. However,
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in contrast to our paper, the authors do not link their RUL distribution to any
maintenance decisions.

Kim et al. (2011) developed a periodic monitoring CBM policy where a
maintenance decision is triggered when a Bayesian control chart (a sequentially
updated health indicator) exceeds a control limit (threshold) that is determined
by minimizing the expected average cost per time unit. We use the same cost
criterion, but base the maintenance policy decision directly on our exact RLD.

To summarize the main contribution of our paper, it introduces a CBM-like
policy that does not require knowledge of the degradation path of the system,
but can take into account continuous changes in the system reliability block
diagram, as well as changes in the component failure time distributions.

3. Reliability function for complex systems using the survival signa-
ture

Let Tsys be the time to failure of the system, and Rsys(t) := P (Tsys > t) be
the system reliability function. Here we describe how Rsys(t), given the system
reliability block diagram and arbitrary component models, can be efficiently
calculated using the survival signature.

We can analyze systems with an arbitrary reliability block diagram, con-
sisting of components of K different types, where there are Nk exchangeable
components of type k in the system, and N , the total number of components in
the system, is given by

∑K
k=1Nk = N .

As a running example, we consider a simplified automotive braking system
consisting of four component types M , H, C and P , with the reliability block
diagram as depicted in Figure 1. The master brake cylinder (M) activates all
four wheel brake cylinders (C1 – C4), which in turn actuate a braking pad
assembly each (P1 – P4). The hand brake mechanism (H) directly actuates the
brake pad assemblies P3 and P4, and the vehicle brakes when at least one brake
pad assembly is actuated. Note that because of the ‘handbrake shortcut’, this
system cannot be described as a nesting of series and parallel subsystems. Our
example system is deliberately kept quite simple for didactical reasons. The
survival signature allows to analyze much larger systems, see, e.g., the examples
in Reed (2017), and our approach is able to deal with such systems.

In a system with N components, the state of the system can be expressed by
the state vector x = (x1, x2, . . . , xN ) ∈ {0, 1}N , with xi = 1 if the ith component
functions and xi = 0 if not. The structure function φ : {0, 1}N → {0, 1},
defined for all possible x, takes the value 1 if the system functions and 0 if the
system does not function for state vector x (Barlow and Proschan, 1975). Most
real-life systems are coherent, which means that φ(x) is non-decreasing in any
of the components of x, so system functioning cannot be improved by worse
performance of one or more of its components. Furthermore, one can usually
assume that φ(0, . . . , 0) = 0 and φ(1, . . . , 1) = 1.

The survival signature (Coolen and Coolen-Maturi, 2012) is a summary of
the structure function for systems with K groups of exchangeable components.
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Figure 1: Reliability block diagram for a simplified automotive brake system with four com-
ponent types M , H, C and P .

Denoted by Φ(l1, . . . , lK), with lk = 0, 1, . . . , Nk for k = 1, . . . ,K, it is defined as
the probability for the event that the system functions given that precisely lk of
its Nk components of type k function, for each k ∈ {1, . . . ,K}. Essentially, this
creates a K-dimensional partition for the event Tsys > t, such that Rsys(t) =
P (Tsys > t) can be calculated using the law of total probability,

P (Tsys > t) =

N1∑
l1=0

· · ·
NK∑
lK=0

P (Tsys > t | C1
t = l1, . . . , C

K
t = lK)P

( K⋂
k=1

{Ckt = lk}
)

=

N1∑
l1=0

· · ·
NK∑
lK=0

Φ(l1, . . . , lK)P
( K⋂
k=1

{Ckt = lk}
)

=

N1∑
l1=0

· · ·
NK∑
lK=0

Φ(l1, . . . , lK)

K∏
k=1

P (Ckt = lk) , (1)

where Ckt is the number of type k components functioning at time t, and P (Ckt =
lk) is the (predictive) probability that exactly lk components of type k function
at time t. The last equality holds as we assume that components of different
types fail independently. Note that for coherent systems, the survival signature
Φ(l1, . . . , lK) is non-decreasing in each lk.

Continuing our example, the survival signature for the system in Figure 1
is given in Table 1, omitting the entries for which Φ(lM , lH , lC , lP ) = 0 or

Φ(lM , lH , lC , lP ) = 1, since the full table would contain
∏K
k=1(Nk + 1) = 2 ×

2× 5× 5 = 100 rows. To illustrate how the table entries are obtained, consider
the case lM = 0, lH = 1, lC = 0, lP = 1, i.e., M has failed, H functions, C1

– C4 have failed, and one of P1 – P4 functions. The system functions only
if the single functioning type P component is either P3 or P4. As the type
P components are exchangeable, each of P1 – P4 has the same probability of
being the functioning component, and so the probability of P3 or P4 being the
functioning component is 2/4, thus Φ(0, 1, 0, 1) = 0.5. The omitted rows from
Table 1 can be determined as follows:
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lM lH lC lP Φ lM lH lC lP Φ

1 0 1 1 0.25 1 0 2 1 0.50
1 0 1 2 0.50 1 0 2 2 0.83
1 0 1 3 0.75 1 0 3 1 0.75
0 1 0 1 0.50 1 1 0 1 0.50
0 1 0 2 0.83 1 1 0 2 0.83
0 1 1 1 0.50 1 1 1 1 0.62
0 1 1 2 0.83 1 1 1 2 0.92
0 1 2 1 0.50 1 1 2 1 0.75
0 1 2 2 0.83 1 1 2 2 0.97
0 1 3 1 0.50 1 1 3 1 0.88
0 1 3 2 0.83
0 1 4 1 0.50
0 1 4 2 0.83

Table 1: Survival signature Φ(lM , lH , lC , lP ) for the simplified automotive brake system de-
picted in Figure 1, omitting the rows for which Φ(lM , lH , lC , lP ) = 0 or Φ(lM , lH , lC , lP ) = 1.

• Take a row, decrease lk for one k ∈ {M,H,C, P} by 1. If the resulting
row is not in Table 1, then the corresponding value of Φ is 0.

• Take a row, increase lk for one k ∈ {M,H,C, P} by 1. If the resulting row
is not in Table 1, then the corresponding value of Φ is 1.

The R package ReliabilityTheory (Aslett, 2016) provides a convenient func-
tion to calculate the survival signature table based on any given graph.

4. Adaptive system residual life distribution based on Weibull com-
ponent models

In this section, we describe how the system reliability function R
(tnow)
sys (t) at

current time tnow can be calculated for a specific component model.
We consider the well-known Weibull model for the component lifetimes,

which is used in a wide variety of reliability studies. To keep things simple, we
assume that the shape parameter of the Weibull distribution is known, and that
only the scale parameter needs to be estimated. The model could be extended
to learn also the shape parameter in a later step, using, e.g., the discretized
approach by Soland (1969).

By using the Bayesian approach described in Section 4.1, our component
model allows to include both expert assessments and test data (if available),
and furthermore can account for component lifetime information from previous
operational cycles and the current operational cycle up to tnow. In Section 4.2
we derive the posterior predictive distribution for the Weibull component model
as needed for the current system reliability calculation. Finally, in Section 4.3,
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we adapt the method from Section 3 to the dynamic setting, resulting in a

formula for R
(tnow)
sys (t).

The model description below follows closely (Walter and Coolen, 2017, §2,
§4.1 – §4.3), who presented the same residual life distribution model. How-
ever, Walter and Coolen (2017) do not consider maintenance policies, but focus
instead on a generalization of the RLD model by using imprecise probability
models for the component lifetimes.

4.1. Bayesian update of the Weibull component models

Here we describe the Weibull model for the component lifetimes, together
with the Bayesian update procedure which allows to include expert knowledge,
component tests, and information from the monitored components in the sys-
tem.

For each type k component, we assume that the lifetime Tk,i (i = 1, . . . , Nk,
k = 1, . . . ,K) is Weibull distributed with scale parameter λk and (fixed) shape
parameter βk > 0, in short Tk,i | λk ∼Wei(βk, λk), with pdf (probability density
function) and cdf (cumulative distribution function)

f(tk,i | λk) =
βk
λk

(tk,i)
βk−1e

−
(tk,i)

βk

λk , (2)

F (tk,i | λk) = 1− e−
(tk,i)

βk

λk = P (Tk,i ≤ tk,i | λk) , (3)

where λk > 0 and t > 0.
The shape parameter βk determines whether the hazard rate is increasing

(βk > 1) or decreasing (βk < 1) over time. For βk = 1, one obtains the
Exponential distribution with constant hazard rate as a special case. The scale
parameter λk can be interpreted through the relation

E[Tk,i | λk] = λ
1/βk
k Γ(1 + 1/βk) . (4)

We will use this equation to convert expected lifetimes to λk and vice versa.
With a Bayesian approach, one can express expert knowledge about the

reliability of the components by assigning a so-called prior distribution, a dis-
tribution over the unknown parameter λk. This prior distribution f(λk) is then
updated to the so-called posterior distribution f(λk | t), the distribution over
λk given the data t, via Bayes’ rule

f(λk | t) ∝ f(t | λk)f(λk) .

The posterior f(λk | t) subsumes the information from both expert knowledge
and data, and forms the basis for all inferences, like, e.g., predictions.

For the prior over λk, a convenient choice is to use the inverse Gamma
distribution, which is commonly parametrized in terms of the parameters ak > 0
and bk > 0,

f(λk | ak, bk) =
(bk)ak

Γ(ak)
λ−ak−1k e

− bk
λk , (5)
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in short, λk | ak, bk ∼ IG(ak, bk).
The inverse Gamma distribution is convenient because it is a conjugate prior,

i.e., the posterior obtained by Bayes’ rule is again an inverse Gamma distribution
and thus easily tractable because only the prior parameters need to be updated
to obtain the posterior parameters, so no numerical integation or simulation
techniques are necessary. Furthermore, this conjugacy holds also when right-
censored observations are used for updating, as indicated below.

Instead of the usual parametrization in terms of ak and bk, we use the
parameters nk > 1 and yk > 0 because they are more easy to interpret. They
are defined as

nk = ak − 1 and yk = bk/nk, (6)

where yk can be interpreted as the prior guess for the scale parameter λk, as
E[λk | nk, yk] = yk. Using (4), we can thus translate an expert’s statement of
the expected component lifetime into a corresponding value for yk. nk can be
seen as a prior strength or pseudocount, this will become clear in the discussion
of the update step below.

The parametrization in terms of nk and yk also clarifies the nature of the
combination of prior information and data through Bayes’ rule. In the conju-
gate setting, applying Bayes’ rule simply means that the prior parameters nk
and yk are updated to posterior parameters, which we denote by n′k and y′k,
respectively. Assume we observe Nk = ek + ck component lifetimes, where ek
is the number of actual failure events, and ck is the number of right-censored
observations. We denote the failure times by tk,1, . . . , tk,ek , and the censor-
ing times by t+k,1, . . . , t

+
k,ck

, and collect them in an observation vector tk =

(tk,1, . . . , tk,ek , t
+
k,1, . . . , t

+
k,ck

). Then, the updated, posterior parameters are

n′k = nk + ek , y′k =
nk

nk + ek
yk +

ek
nk + ek

τ(tk)

ek
, (7)

where τ(tk) =
∑ek
i=1(tk,i)

β +
∑ck
i=1(t+k,i)

β .
From the simple update rule (7), we see that y′k is a weighted average of the

prior parameter yk and the maximum likelihood estimator (ML) τ(tk)/ek, with
weights proportional to nk and ek, respectively. nk can thus be interpreted as
a prior strength or pseudocount, indicating how much our prior guess should
weigh against the ek observed failure events. Furthermore, Var[λ | nk, yk] =
(yk)2/(1− 1/nk); for fixed yk, a higher nk indicates that more probability mass
is concentrated around yk.

Using (6) and (7), the posterior distribution over λk is given by

λk | nk, yk, tk ∼ IG(nk + ek + 1, nkyk + τ(tk)) . (8)

As this posterior can be defined in terms of the updated, posterior parameters
n′k and y′k, we may also write

f(λk | nk, yk, tk) = f(λk | n′k, y′k) .
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The iterative nature of Bayesian inference means that we can take the updated,
posterior parameters as new prior parameters and update them again using new
data. We will use this property to use the extra information about components
that accumulates during operation of the system: At any time tnow > 0, all
non-failed components contribute a right censored observation t+now; any failed
components instead contribute a fully observed, non-censored lifetime, and both
types of observations can be used in the update step (7).

4.2. Component posterior predictive distributions determined at tnow

To calculate the current system reliability function R
(tnow)
sys (t), we need, for

each k = 1, . . . ,K, the probabilities P (Ckt = lk) for the number of type k
components that function at times t > tnow, taking into account all information
available at tnow. In the Bayesian framework, these probabilities are given by a
so-called posterior predictive distribution that can be derived from the posterior
over λ.

Denote by n
(0)
k and y

(0)
k the parameters reflecting the knowledge base at

system start-up time t = 0. These could have been obtained by updating prior
parameters nk and yk (reflecting expert knowledge) to n′k and y′k using test
data, or could be taken directly equal to nk and yk if no test data is available.

In both cases, the distribution f(λk | n(0)k , y
(0)
k ) thus accounts for all knowledge

on component type k that is available at system start-up.
Following our comments at the end of Section 4.1, the component models can

be further updated using information gained from the current operational cycle
as of tnow: failure times of failed components, and the right-censoring time t+now
for each non-failed component, can be used to update n

(0)
k and y

(0)
k according

to (7). We denote the resulting parameter values by n
(tnow)
k and y

(tnow)
k .

In analogue to the notation used in Section 4.1, let Nk = e
(tnow)
k + c

(tnow)
k be

the number of type k components in the monitored system, where e
(tnow)
k denotes

the number of type k components that have failed by tnow during the current op-

erational cycle, and c
(tnow)
k denotes the number of type k components that have

not failed by tnow during the current operational cycle. We can thus collect these

observations, as of tnow, in a vector t
(tnow)
k = (tk,1, . . . , tk,e(tnow)

k

, t+now, . . . , t
+
now),

containing c
(tnow)
k right-censored observations t+now. The resulting posterior pre-

dictive distribution for any t > tnow is obtained as

P (Ckt = lk | n(0)k , y
(0)
k , t

(tnow)
k )

=

(
c
(tnow)
k

lk

)∫ [
P (T k > t | T k > tnow, λk)

]lk×
[
P (T k ≤ t | T k > tnow, λk)

]c(tnow)
k −lkf(λk | n(0)k , y

(0)
k , t

(tnow)
k ) dλk , (9)

where T k is the Weibull distributed lifetime of a component of type k. Note that
through the condition T k > tnow, we also take into account that the components
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in the system have the age tnow. Now, by the Weibull assumption (3), one has

P (T k ≤ t | T k > tnow, λk) =
P (tnow < T k ≤ t | λk)

P (T k > tnow | λk)

=
F (t | λk)− F (tnow | λk)

1− F (tnow | λk)
= 1− e−

tβk−(tnow)βk

λk .

(10)

Consider the posterior (8) obtained using observations t
(tnow)
k , written in terms

of the updated parameters n
(tnow)
k and y

(tnow)
k . Substituting this posterior and

(10) into (9), we get

P (Ckt = lk | n(0)k , y
(0)
k , t

(tnow)
k )

=

(
c
(tnow)
k

lk

)∫ [
e
− t

βk−(tnow)βk

λk

]lk[
1− e−

tβk−(tnow)βk

λk

]c(tnow)
k −lk

×

(
n
(tnow)
k y

(tnow)
k

)n(tnow)
k +1

Γ(n
(tnow)
k + 1)

λ
−(n(tnow)

k +1)−1
k e

−
n
(tnow)
k

y
(tnow)
k

λk dλk

=

(
c
(tnow)
k

lk

) c
(tnow)
k −lk∑
j=0

(−1)j
(
c
(tnow)
k − lk

j

)(
n
(tnow)
k y

(tnow)
k

)n(tnow)
k +1

Γ(n
(tnow)
k + 1)

×

∫
λ
−(n(tnow)

k +1)−1
k exp

{
−

(lk + j)(tβk − (tnow)βk) + n
(tnow)
k y

(tnow)
k

λk

}
dλk .

(11)

The terms remaining under the integral form the core of an inverse Gamma

distribution (5) with parameters n
(tnow)
k + 1 and n

(tnow)
k y

(tnow)
k + (lk + j)(tβk −

(tnow)βk)), allowing to solve the integral using the corresponding normalization

constant. We thus have, for lk ∈ {0, 1, . . . , c(tnow)
k },

P (Ckt = lk | n(0)k , y
(0)
k , t

(tnow)
k )

=

(
c
(tnow)
k

lk

) c
(tnow)
k −lk∑
j=0

(−1)j
(
c
(tnow)
k − lk

j

)
×

(
n
(tnow)
k y

(tnow)
k

n
(tnow)
k y

(tnow)
k + (lk + j)

(
tβk − (tnow)βk

))n
(tnow)
k +1

, (12)

where n
(tnow)
k y

(tnow)
k = n

(0)
k y

(0)
k +

e
(tnow)
k∑
i=1

(tk,i)
βk + c

(tnow)
k (tnow)βk

and n
(tnow)
k = n

(0)
k + e

(tnow)
k .
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4.3. Conditional system reliability function determined at tnow

Now that we can calulate the component posterior predictive distributions at
tnow, we can use the method from Section 3 to determine the dynamic system

residual life distribution (RLD) R
(tnow)
sys (t), giving us the probability that the

system functions at times t > tnow, taking into account all information available
at tnow:

R(tnow)
sys (t) =

c
(tnow)
1∑
l1=0

· · ·
c
(tnow)
K∑
lK=0

Φ(tnow)(l1, . . . , lK)

K∏
k=1

P (Ckt = lk | n(0)k , y
(0)
k , t

(tnow)
k ) .

(13)

Since this is the distribution of system reliability conditional on the system

surviving until tnow, we have that R
(tnow)
sys (tnow) = 1 for any tnow before sys-

tem failure. Note that if one or several components have failed by tnow, the
system reliability block diagram changes, and with it the survival signature
Φ(l1, . . . , lK). We denote the current survival signature by Φ(tnow)(l1, . . . , lK).

For each prediction time t, (13) is a sum over
∏K
k=1(c

(tnow)
k + 1) terms. How-

ever, some of these terms correspond to Φ(tnow)(l1, . . . , lK) = 0, which can thus
be disregarded. For each of the remaining terms, we must calculate the product∏K
k=1 P (Ckt = lk | n(0)k , y

(0)
k , t

(tnow)
k ). For all products, the constituting factors

can be taken from the same table enumerating P (Ckt = lk | n(0)k , y
(0)
k , t

(tnow)
k )

for all lk ∈ {0, 1, c(tnow)
k }, k = 1 . . . ,K, so (12) needs to be evaluated only∑K

k=1(c
(tnow)
k + 1) times.

We will evaluate (13) on a dense grid of prediction times t > tnow, thus
discretely approximating the RLD. As the evaluation of (13) for each t does not
involve any complex numeric calculations or Monte Carlo sampling, the grid of
prediction values can be very fine.

5. Dynamic and adaptive maintenance policy based on the current
system residual life distribution

Now we can derive the adaptive and dynamic maintenance policy that resem-
bles a CBM policy. Our idea is described here first in general terms, and then
illustrated along two examplary timelines in Section 5.1. Afterwards, we give
a detailed description of the policy in Section 5.2, and expand on the involved
computations in Sections 5.3 and 5.4.

We denote by tnow the moment in time that the system is observed, measured
from the moment the present operational cycle has started, which coincides with
starting to use a new system. Instead of determining a threshold for a degrada-
tion signal like in usual CBM approaches, we determine, for tnow, the adaptive

and dynamic time span τ
(tnow)
∗ which gives the time from tnow until the next

optimal moment to re-evaluate the system. A preventive maintenance action is

initiated when tnow + τ
(tnow)
∗ would be earlier than the next planned evaluation

12



time point. We describe this dynamic and adaptive maintenance policy in more

detail in Section 5.2. The optimal time to system re-evaluation τ
(tnow)
∗ is deter-

mined based on R
(tnow)
sys (t) by minimizing g(tnow)(τ), the expected cost rate for

the current operational cycle. This criterion, as detailed in Section 5.3, only as-
sumes that a RLD is given, and thus is not tied to our choice for the component
models. One could also consider alternative optimality criteria to determine

τ
(tnow)
∗ ; when safety is paramount one could, e.g., determine τ

(tnow)
∗ such that

the probability of system failure is at most at some very low pre-determined
level. Section 5.4 then focuses on our choice for the component models and the

resulting form for R
(tnow)
sys (t), and shows how τ

(tnow)
∗ is numerically determined

in this situation.

5.1. Two exemplary timelines

Figure 2 shows two examplary time lines, starting each with a new sys-
tem (operational cycle) at t = 0. The timeline on the left leads to preventive
maintenance, the timeline on the right to corrective maintenance.

As described in Section 1, the health of the system is re-evaluated at three
types of triggers. Triggers of type (1) are the evenly spaced planned evaluation
time points mδ, where m ∈ N0. The times mδ are indicated by vertical tick
lines on the time axis in Figure 2, where δ = 0.1. The moments of failure of
a component form the other two types of triggers. A component failure after
which the system still functions is a trigger of type (2), depicted as a (non-filled)
circle on the time axis. A filled circle indicates a trigger of type (3), which is a
component failure that causes the whole system to fail.

For each trigger of type (1) and (2), the system health is evaluated by cal-

culating τ
(tnow)
∗ , the currently optimal time to re-evaluation, visualized by the

thick horizontal bars in Figure 2. For a type (3) trigger, the system health
evaluation just corresponds to acknowledging that the system has failed. For

triggers of type (1) and (2), the calculated τ
(tnow)
∗ is compared to the time to

the next planned evaluation time point. When τ
(tnow)
∗ is shorter than this time,

preventive maintenance of the system is initiated.

In the timeline on the left of Figure 2, τ
(tnow)
∗ is re-evaluated at times

tnow = 0.1, 0.2, 0.24, 0.3, 0.36, 0.4, where 0.24 and 0.36 correspond to compo-
nent failure times. Note that the failure at tnow = 0.24 substantially shortens

τ
(0.24)
∗ , such that 0.24 + τ

(0.24)
∗ < 0.2 + τ

(0.2)
∗ , i.e., the optimal moment of re-

evaluation has moved backwards in time. This illustrates that new insights
drawn from a component failure (regarding the reliability block diagram as well
as the component model) may have considerable influence on the system RLD

and the τ
(tnow)
∗ that is derived from it. The component failure at tnow = 0.36

leads to a further shortened τ
(0.36)
∗ , such that τ

(0.36)
∗ < 0.1 = δ. However, this

does not lead to an immediate decision for preventive maintenance, since τ
(0.36)
∗

is compared to the time to the next planned evaluation at t = 0.4. The decision
for preventive maintenance is instead made at tnow = 0.4, as only then it is not
economical any more to wait for the next planned evaluation at t = 0.5.
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t0 0.1 0.2 0.3 0.4 0.5
δ

τ
(0)
∗

τ
(0.1)
∗

τ
(0.2)
∗

τ
(0.24)
∗

τ
(0.3)
∗

τ
(0.36)
∗

τ
(0.4)
∗

preventive
replacement
at tnow = 0.4
as τ

(0.4)
∗ < δ

t0 0.1 0.2 0.3
δ

τ
(0)
∗

τ
(0.1)
∗

τ
(0.14)
∗

τ
(0.2)
∗

corrective
replacement
at tnow = 0.27
due to system
failure

Figure 2: Two exemplary timelines for the suggested maintenance policy. The horizontal bars

depict τ
(tnow)
∗ , the time to the next economically optimal evaluation of the system RLD, for

subsequent times tnow. The times tnow for which τ
(tnow)
∗ is evaluated are at regular intervals

mδ,m ∈ N0 (trigger 1), and at the time of component failures (trigger 2), which are marked
by a circle on the time axis. Failures that lead to the whole system failing (trigger 3) are
marked by a filled circle.

The timeline on the right of Figure 2 illustrates an operational cycle ending
with corrective maintenance. Here, the component failure at tnow = 0.27 leads

to system failure. The size of τ
(0.2)
∗ indicates that the component failure that

happens at tnow = 0.27 had been deemed very unlikely at time tnow = 0.2, but
then nevertheless occured at t = 0.27.

5.2. Detailed description of the policy

Each operational cycle starts with a system startup. At this point in time,
the system is in an (as good as) new state, i.e., all components in the system
are (as good as) new and have not aged. An operational cycle ends when the
system is either maintained preventively, or the system fails, which triggers a
corrective maintenance action.

We assume that both preventive and corrective maintenance result in an (as
good as) new system state by replacing all components, such that the system
begins a new operational cycle always under the same conditions. At first sight,
replacing a complete system when only some parts of it are defective may seem
strange. However, there are many real life examples, including from daily live.
So called complete clustering (Olde Keizer et al., 2017) may be optimal in case of
a very strong economic dependence between the different parts of a system, e.g.,
due to a very high fixed set-up cost independent of the maintenance activities
to be done, as is the case of installations used in the generation and distribution
of oil and gas. Note that often for safety reasons, the latter installations are
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monitored continuously. There may be also technical dependencies between
parts of a system that may require combined replacement: replacing the cassette
of a bike often also requires to replace the chain, and the tires of an airplane are
required to have the same thickness. But also complete systems are replaced
because replacing one or more of its parts may take much longer, which may
result in big production losses. Another reason can be that there may be a
high probability that when individual parts are replaced, other parts will be
damaged, requiring their replacement as well.

Replacing not all components during maintenance would require to account
for the different ages of components in the system at the start of a new cycle.
While this is in principle possible in our approach, exploring such selective
replacement schemes is out of scope for this paper. Optimizing over replacement
schemes is, in our view, a higly interesting topic that merits an investigation of
its own. We will return to this in the conclusion (Section 8).

Figure 3 depicts the flow chart for the policy, indicating the decisions that
are repeatedly encountered in a single operational cycle. The flow chart also
contains the loop back to the start of a new operational cycle.

Consider a grid of planned evaluation time points {mδ : m ∈ N0}, with δ a

sufficiently small time increment. During an operational cycle, τ
(tnow)
∗ is usually

recalculated at times tnow = mδ, m = 0, 1, 2, . . .. However, if a component i of
type k fails before the next tnow on the grid, tnow is set instead to the exact failure
time tk,i. Next, we check whether the system has failed due to this component
failure. If the system has failed, a corrective maintenance action is carried out,

incurring cost cc. If the system has not failed, we calculate τ
(tnow)
∗ for the current

off-grid time tnow = tk,i, and move back onto the grid afterwards, unless there
is another component failure before the next planned evaluation time.

The calculation of τ
(tnow)
∗ for a fixed tnow resembles the calculation of the

maintenance interval in an age based policy by trading off the costs of preventive

and corrective maintenance (see Section 5.3 below). However, because τ
(tnow)
∗

is derived from the current R
(tnow)
sys (t), our policy is adaptive and dynamic like

a CBM policy. When computation of the RLD is fast, frequent recalculation of

τ
(tnow)
∗ is feasible, and it is useful because, even in absence of failures of system

components, all components age, and also non-failure adds information to the
component models, reducing uncertainty.

Once τ
(tnow)
∗ is calculated, it is compared to the time span from the current

tnow to the next planned evaluation time. If the current tnow is a time on the
grid, then tnow = mδ for some m ∈ N0. The next planned evaluation is then at

(m+ 1)δ, and we compare τ
(tnow)
∗ to δ. If τ

(tnow)
∗ < δ, a preventive maintenance

action is triggered, incurring cost cp, otherwise we attempt to move to the next
planned evaluation point, by setting m = (m+ 1).

If the current tnow is instead an off-grid time corresponding to failure of
component i of type k at time tk,i, after which the system still functions, then
the next planned evaluation time is the next time on the grid. Let m be such
that mδ < tk,i < (m + 1)δ, so the next time on the grid is (m + 1)δ, and we
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Figure 3: Flowchart for the proposed maintenance policy, showing a single operational cycle,
including the loop back to system startup that starts a new cycle as a dashed arrow.

compare τ
(tnow)
∗ with (m + 1)δ − tk,i. If τ

(tnow)
∗ < (m + 1)δ − tk,i, a preventive

maintenance action is triggered, incurring cost cp, otherwise we attempt to move
to the next planned evaluation point, which is still (m+ 1)δ.

In both cases, we decide to maintain the system preventively when the op-
timal time to re-evaluation is closer to now than the next time we intend to
re-evaluate the system RLD, since otherwise, in waiting to the next planned
evaluation time, one would exceed the optimal system failure risk as deter-

mined by the trade-off made via g(tnow)(·). When τ
(tnow)
∗ is instead further in

the future than the next planned evaluation time, we can safely continue to the
next planned evaluation time, without risking to miss the cost-optimal moment
to preventively maintain the system.

At the end of each operational cycle, i.e., after maintaining the system ei-
ther preventively or correctively, the component information gained during the
completed operational cycle is added to the component knowledge base by up-

dating the parameters nk and yk accordingly, such that n
(0)
k and y

(0)
k for the

next operational cycle account for the (censored) lifetimes observed during the
previous operational cycles.
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5.3. Expected operational cycle cost rate

To determine the optimal time to maintenance τ
(tnow)
∗ , we use the expected

one-cycle cost rate (Ansell et al., 1984; Mazzuchi and Soyer, 1996; Coolen-
Schrijner and Coolen, 2006) as the unit cost rate. As discussed in the literature
review (Section 2), we cannot use the renewal theory based way to calculate the
unit cost rate as often encountered in CBM literature (e.g., Si et al., 2013; Kim
et al., 2011).

Let cp be the cost of preventive maintenance, and cc the cost of corrective
(unplanned, breakdown) maintenance, where cp < cc. Usually, set-up costs,
the actual maintenance costs (labor, new components) and downtime costs are
much higher for corrective maintenance, such that often, cp � cc.

Let T
(tnow)
sys be the random variable corresponding to R

(tnow)
sys (t), giving the

(random) system failure time for times t > tnow, conditioned on all information

available at tnow, and f
(tnow)
sys (t) be the corresponding probability density. Note

that due to the conditional nature of R
(tnow)
sys (t), which gives the probability that

the system functions at time t given that it functions at tnow, also f
(tnow)
sys (t) is

a conditional probability density, with support {t ∈ R : t > tnow}.
Conditional on the realization t

(tnow)
sys of T

(tnow)
sys , the unit cost rate for planning

maintenance at τ time units after tnow is

g(τ | T (tnow)
sys = t(tnow)

sys ) =

{
cp/(tnow + τ) if t

(tnow)
sys ≥ tnow + τ

cc/t
(tnow)
sys if tnow < t

(tnow)
sys < tnow + τ .

(14)

Note that here τ is a time span starting from tnow, and so is a time on a
prospective time scale, where 0 corresponds to tnow. In contrast, tnow and

t
(tnow)
sys are times on an absolute time scale, where 0 corresponds to the time of

a new system start-up. Taking the expectation over T
(tnow)
sys in (14) leads to the

expected operational cycle cost rate

g(tnow)(τ) = E[g(τ | T (tnow)
sys )]

=
cp

tnow + τ
R(tnow)

sys (tnow + τ) + cc

∫ τ

0

1

tnow + θ
f (tnow)
sys (tnow + θ) dθ .

(15)

Here, we assume that the time required to execute preventive and corrective
maintenance can be neglected when compared with the duration of one oper-
ational cycle. g(tnow)(τ) gives the cost rate that we expect to incur over the
complete operational cycle when, at time tnow, we schedule preventive main-
tenance for time tnow + τ , so g(tnow)(τ) trades off the risk of system failure
before tnow + τ with the gains we could reap when the system survives until

tnow + τ . Figure 4 shows R
(tnow)
sys (t) and the corresponding g(tnow)(τ) for a num-

ber of current times tnow in a numeric example which is described in more detail
in Section 6.
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Figure 4: System reliability and unit cost rate functions for tnow = 0, 2, 4, 6, 8 for the system
depicted in Figure 1 and prior component models as given in Table 2, assuming the failure
history P2 = 3, P3 = 4, C2 = 6, C3 = 7, H = 8, and costs cu = 1, cp = 0.2.

Note that for the integral in (15) to exist, E[1/(T
(tnow)
sys − tnow)] must exist,

which is a condition for f
(tnow)
sys (tnow + θ) for values of θ close to 0 (Coolen-

Schrijner and Coolen, 2006). For our approach, however, this condition is not

relevant, as we use a discrete approximation of R
(tnow)
sys (t) and f

(tnow)
sys (t), respec-

tively (see Section 5.4 below).

τ
(tnow)
∗ := arg min g(tnow)(τ) is the cost-optimal time to do maintenance as

of tnow, incorporating all that is known at current time tnow. The minimal

expected operational cycle cost rate g
(tnow)
∗ := g(tnow)(τ

(tnow)
∗ ) corresponding to

τ
(tnow)
∗ thus is, as of tnow, the lowest cost rate for the current operational cycle

that we can expect to attain. g
(tnow)
∗ generally decreases with tnow since for

larger tnow, maintenance costs are spread over a longer time period. However,

when many (or few but critical) components fail, g
(tnow)
∗ may increase, since

then, system failure becomes much more likely, leading to a higher risk of in-
curring the corrective maintenance cost cc. Figure 5 illustrates these relations
for the scenario depicted in Figure 4. As can be seen there and in the numerical

examples in Section 6, for continuous component lifetime distributions, τ
(tnow)
∗

is a smooth function of tnow during periods where no component fails, with dis-
crete jumps at component failure times. The size of the jump depends on the
relevance of the failed component for the reliability of the system at the moment
that the component failure occurs.
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Figure 5: τ
(tnow)
∗ , t

(tnow)
∗ = tnow + τ

(tnow)
∗ and g

(tnow)
∗ = g(tnow)(τ

(tnow)
∗ ) for the system

depicted in Figure 1, assuming the failure history P2 = 3, P3 = 4, C2 = 6, C3 = 7, H = 8,
and costs cu = 1, cp = 0.2.

Note that common cause failures, i.e., failures of several components at the
same time due to a shared root cause, are currently not accounted for in our
model. Such simultaneous failures will seriously influence the RLD and thus

τ
(tnow)
∗ . We will return to this in the conclusion (Section 8).

5.4. Numerical optimization of the expected operational cycle cost rate

For our choice of the component models, the resulting R
(tnow)
sys (t) as of (13)

is closed-form, but not tractable analytically. Therefore, we evaluate R
(tnow)
sys (t)

on a dense grid of time points t covering the time span from tnow to some
horizon time tnow + th. We calculate g(tnow)(τ) on the same grid, and determine

τ
(tnow)
∗ by minimizing over this grid. Here, we approximate the integral in (15)

numerically by a sum, where f
(tnow)
sys (t) is calculated via differences of R

(tnow)
sys (t).

The horizon time span th can be determined by practical considerations, but

generally should reach far enough into the tail of R
(tnow)
sys (t) such that g(tnow)(τ)

is not cut off before it reaches its minimum. Note that according to (15), the

calculation of g(tnow)(τ) requires evaluations of R
(tnow)
sys (t) and f

(tnow)
sys (t) only for

tnow < t ≤ tnow + τ . The choice of th is thus not critical, in the sense that

g(tnow)(τ) evaluations will be correct even if th < τ
(tnow)
∗ .

We have implemented our method in R (R Core Team, 2016), using the pack-
age ReliabilityTheory (Aslett, 2016) to calculate survival signatures (code
available on request). As the parameter update step is closed-form, recalcula-

tion of τ
(tnow)
∗ is a matter of seconds, allowing for a near real-time update.

6. Further elaboration of the case study

We now explain in more detail the case study used for the previous illustra-
tive figures (Figures 4 and 5). We use the simplified automotive brake system
as introduced in Section 3, see Figure 1 for the reliability block diagram.

The cost parameters are chosen as cc = 1, cp = 0.2, i.e., corrective main-
tenance is five times more costly than preventive maintenance. This makes it
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k βk E[T ki ] y
(0)
k n

(0)
k

C 2 3 11.5 1
H 1 10 10.0 1
M 2.5 8 244.1 1
P 1.5 5 13.0 1

Table 2: Prior parameters for the four component types as used in the numerical examples.

worthwile to aim for a preventive repair of the system, but corrective mainte-
nance will not be avoided at all cost.

The choice of prior parameters for the four component models are discussed
in Section 6.1. Then, our maintenance policy is illustrated under three different
exemplary failure time histories, described in Sections 6.2, 6.3 and 6.4.

6.1. Prior component models

The prior component model parameters chosen for this case study are given
in Table 2. Note that the scale parameter for component type H is 1, such that
the failure times for this component type are assumed to follow an Exponential
distribution. In cases where only H and one or both of P3 and P4 are func-
tioning, the system reliability function will thus be close to exponential, making
preventive maintenance unattractive.

Note also that n
(0)
k = 1 for all four component types, indicating very weak

prior knowledge. Observed failure times thus have a strong influence on the

updating of y
(0)
k , such that component models are primarily data-driven. This

offers the advantage of quick adaption for the case that an expert’s assessment

of the component MTTF turns out to be inadequate. When n
(0)
k and y

(0)
k also

include test data, then n
(0)
k will typically be larger, since the update of nk

involves the number of observed failures (see Section 4.1).
The expected component failure behaviour obtained by the parameter choices

in Table 2 is visualized in Figure 6, showing the prior predictive reliability func-
tion for a single component of each type. Note that these functions are not
plain Weibull reliability functions, but weighted averages over Weibull reliabil-
ity functions according to the prior distribution over the scale parameter λk.
Judging the adequacy of the prior parameter choices thus requires the sampling
model to be correct. Methods for checking the sampling model are discussed,
e.g., in Bayarri and Berger (2000). Figure 6 indicates that, e.g., the median
prior expected failure times are 2.2, 4.1, 6.3, and 3.1 for type C, H, M , and
P components, respectively. While it is a priori quite unlikely that any type C
component will survive past time 6, we expect 25% of type H components to
survive past time 10.

6.2. Failure history 1: failures later than expected

In the first failure history, we observe P2 = 3, P3 = 4, C2 = 6, C3 = 7 and
H = 8, and in following the system until tnow = 8, all other failure times are
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Figure 6: Prior predictive reliability functions corresponding to the values from Table 2,
showing the expected failure behaviour.

right-censored. This is the failure history already used for Figures 4 and 5. Here,
failures observed for type C are thus considerably later than expected, while for
type P , the two observed failures are close to the assumed MTTF. Both failure
at time 8 for H and non-failure by time 8 for M are nothing unusual. In total,
due to the late type C failures, prior assumptions turn out to be somewhat
pessimistic.

This is reflected in Figure 5, where τ
(tnow)
∗ (left panel) first decreases quickly

but then tends to decrease more slowly during failure-free periods, which is a
consequence of adjusting prior expectations for type C components due to their

unexpected reliability. Large drops of τ
(tnow)
∗ happen only at the failures of

components P2, P3 and H at times 3, 4 and 8, respectively, as R
(tnow)
sys (t) changes

considerably at these moments. τ
(tnow)
∗ falls below δ = 0.1 at time tnow = 6,

triggering preventive maintenance of the system. τ
(tnow)
∗ = 1.60 at tnow = 0, this

corresponds to the optimal maintenance time in an age-based policy that takes

the system as monolithic. Since τ
(tnow)
∗ does not change dramatically most of the

time, t
(tnow)
∗ , the cost-optimal moment of maintenance on the absolute timescale

(center panel), steadily increases, with small drops corresponding to drops in

τ
(tnow)
∗ , showing that as time progresses, accumulated information indicates that

maintenance can be postponed. Consequently, g
(tnow)
∗ (right panel) is steadily

decreasing, with small upward jumps at the failures of P2 and P3. At tnow = 6,
the expected operational cycle cost rate is 0.033, and so considerably lower
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Figure 7: Illustration of the gains due to the parameter update at each tnow, assuming the
failure history P2 = 3, P3 = 4, C2 = 6, C3 = 7, H = 8.

than the operational cycle cost rate of 0.2/1.6 = 0.125 that one obtains by
maintaining the system preventively at time 1.6, as suggested by the age-based
policy that disregards the information from component monitoring. In this
example, using the component failure information allows to lower the cost rate
by 73%.

The effect of the continuous parameter update in our policy is illustrated
in Figure 7. There, the results as seen already in Figure 5 are compared to
the case when component parameters are not updated during the operation
of the system, while still accounting for the fact that components age, and

that a failed component changes the system layout. We see that τ
(tnow)
∗ (left

panel) is decreasing more quickly in the no update case, with the jumps at
component failure times being less pronounced than in the update case. Without
the continuous update, residual system lifetime continues to be underestimated,
and maintenance is scheduled too early, leading to higher expected operational

cycle cost rates g
(tnow)
∗ (right panel). τ

(tnow)
∗ for the policy without parameter

update drops below δ = 0.1 at tnow = 4, while maintenance is triggered for
the algorithm with parameter update at tnow = 6. The parameter update thus
allows to run the system for two more time units, corresponding to a unit cost
rate of 0.2/6 = 0.033 instead of 0.2/4 = 0.05, a reduction of 33%.

6.3. Failure history 2: failure times as expected

In a second failure history, we observe the failure times C2 = 1, C2 = 3,
P2 = 0.5, P3 = 1.5, and follow the system until tnow = 2.5. Here, components of
type C behave more or less as expected, while type P components fail slightly
earlier than expected. Overall, prior assumptions are reasonably in line with
observed failure behaviour. Consequently, the difference between the continuous
update case and the no update case is small, as visualized in Figure 8. There,

τ
(tnow)
∗ values for the policy with parameter updates vary around those obtained
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Figure 8: Effect of the continuous parameter update for the second failure history (C2 = 1,
C2 = 3, P2 = 0.5, P3 = 1.5) which is more or less in line with expectations. With observed
failure behaviour more or less in line with expectations, both the policies with and without
continuous update perform similarly, unlike in case of the first failure history as depicted in
Figure 7, where updating gave considerable gains.

for the policy without parameter updates, and a similar behavior for t
(tnow)
∗ and

g
(tnow)
∗ is observed. With δ = 0.1, preventive maintenance is carried out at times

2.6 and 2.5 for the two policies, respectively. This shows that for this failure

history, in which there is not much to be gained by the parameter update, τ
(tnow)
∗

behaviour is dominated by the update of the system reliability block diagram.
Here, any differences due to the update are very small in comparison to the
gains offered by the continuous update in case of the first failure history (note
the differing vertical and horizontal scales in Figures 7 and 8).

6.4. Failure history 3: failures earlier than expected

The third failure history contains very early failures with C2 = 0.1, C3 = 0.2,
C4 = 0.8 H = 1, P2 = 0.3, P3 = 0.4, and we follow the system until tnow = 1,
see Figure 9.

The policy without parameter update leads to consistently higher τ
(tnow)
∗ val-

ues, while the policy with parameter update takes the surprisingly early failures

into account. Unlike in the other two failure histories, t
(tnow)
∗ is generally de-

creasing, indicating that maintenance should happen much earlier than expected
initially. The policy with parameter update consistently suggests to maintain

earlier than the policy without update, but for both models, τ
(tnow)
∗ drops below

δ = 0.1 upon the failure of H at tnow = 1, obtaining an operational cycle cost
rate of 0.2. In contrast, the age-based policy that disregards the information
from component monitoring would have scheduled maintenance for time 1.6,
but it is very unlikely that the system will still function by that time. If the
system fails between time 1 and time 1.6, then the age-based policy would lead
to an operational cycle cost of 0.625 to 1, much higher than for our policy.
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Figure 9: Effect of the continuous parameter update for the third failure history, containing
very early failures (C2 = 0.1, C3 = 0.2, C4 = 0.8 H = 1, P2 = 0.3, P3 = 0.4).

Like in failure history 2, the structural information (which components still
function?) seems to deliver a major part of the gains for our CBM policy,
whereas the parameter update seems most effective in situations where com-
ponent failures happen later than expected. These findings are confirmed by
results from a small simulation study described next.

7. A small simulation study

We conducted a small simulation study to illustrate the performance of our
policy as compared to corrective and age-based policies. To be able to discern
the effect of parameter learning over several operational cycles, we simulated
component failure times for five subsequent operational cycles for each simula-
tion repetition. We thus can compare policies that use information gained in
previous operational cycles with policies that do not update component param-
eters at the end of an operational cycle. We also distinguish condition-based
maintenance policies with and without continuous parameter update as in Sec-
tion 6. In total, we compare the six maintenance policies listed in Table 3, which
also gives the abbreviations used in Figures 10, 11 and 12.

We compare these policies by three simple performance measures, calculated
for each repetition. esys is the number of system failures that occured when
applying the policy, This is an integer between zero and five, as there are five
operational cycles per repetition. r̄sys is the mean realized system runtime,
i.e., the average of the realized operational cycle length, taken over the five
operational cycles per repetition. ḡ is the mean realized operational cycle cost
rate obtained over the five operational cycles. This is calculated as the sum
of preventive and corrective maintenance costs incurred in the five operational
cycles, divided by the sum of the five realized operational cycle lengths.
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Policy Description

CBM-cpu Condition-based maintenance (continuous parameter update)
CBM-epu Condition-based maintenance (end of cycle parameter update)
CBM-npu Condition-based maintenance (no parameter update)
ABM-epu Age-based maintenance (end of cycle parameter update)
ABM-npu Age-based maintenance (no parameter update)
CM Corrective maintenance

Table 3: The six maintenance policies compared in the simulation study.

CBM − cpu CBM − epu CBM − npu ABM − epu ABM − npu CM
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Figure 10: Simulation study with 20 repetitions, where each repetition consists of 5 subsequent

operational cycles. Case A: λk = y
(0)
k .

We use again the simplified automotive brake system depicted in Figure 1,
together with the prior parameters for the component models as given in Table 2,
and assume that cc = 1 and cp = 0.2 like before. We study three data scenarios
A, B and C, corresponding to failure times as expected, as well as failure times
earlier and later than expected.

7.1. Case A: failure times as expected, λk = y
(0)
k

For this scenario, we simulated component failure times according to prior
expectations, i.e., component failure times were simulated as Weibull failure
times with the scale parameter λk chosen as equal to the expert’s prior guess

y
(0)
k for all four component types. The results are depicted in Figure 10.

Obviously, the corrective maintenance policy (CM) results in esys = 5 for
all 20 repetitions, as it cannot lead to preventive maintenance. In contrast, all
condition-based (CBM) and age-based policies can avoid system failures entirely
(with a single exception for ABM-epu). Mean system runtimes are longest for
CM because it runs the system until failure, but this leads to the highest mean
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Figure 11: Simulation study with 20 repetitions, where each repetition consists of 5 subsequent

operational cycles. Case B: λk = 0.5y
(0)
k .

cost rates. The condition-based maintenance policy with continuous parameter
update (CBM-cpu) obtains the lowest mean cost rates, since it leads to the
longest system runtimes without system failures. CBM-epu and CBM-npu have
slightly higher cost rates, as they lead to shorter system runtimes. The age-based
policy without parameter update (ABM-npu) always schedules maintenance for

τ
(0)
∗ = 1.6. As the system does not fail before this time in any of the five

operational cycles within the 20 repetitions, the mean realized system runtime
is constantly 1.6, with mean cost rate 0.2/1.6 = 0.125.

7.2. Case B: failure times earlier than expected, λk = 0.5y
(0)
k

For the second scenario, component failure times were simulated as being
earlier than expected, by choosing λk for all component types as half the size

of the expert’s prior guess, i.e., λk = 0.5y
(0)
k for all k = C, H, M, P. The results

are depicted in Figure 11.
Here, only CBM-cpu can avoid system failures entirely. Both CBM-epu and

CBM-npu result in one system failure in the 20× 5 = 100 system runs, whereas
the two age-based policies each result in ten system failures. System runtimes
are less variable for the age-based policies since they do not use the current
system structure information, i.e., which components have failed and which not.
System runtimes are more variable for the condition-based policies, but longer on
average, leading to lower realized cost rates. Again, CBM-cpu performs slightly
better than CBM-epu as it has the possibility to learn within an operational
cycle as well, managing to avoid system failures entirely. Still, CBM-npu does
surprisingly well, considering that it never updates prior component parameters.
This confirms the observation from Section 6.4 that current system structure
information delivers a major part of the gains for our CBM policy.
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Figure 12: Simulation study with 20 repetitions, where each repetition consists of 5 subsequent

operational cycles. Case C: λk = 2y
(0)
k .

7.3. Case C: failure times later than expected, λk = 2y
(0)
k

The third scenario consists of component failure times that are later than

expected, obtained by simulating Weibull lifetimes using λk = 2y
(0)
k for all four

component types. The results are depicted in Figure 12.
As the expert’s information now underestimates component lifetimes, all

policies (except the corrective policy) act quite cautiously, leading to complete
avoidance of system failures. However, the mean system runtimes r̄sys exhibit
a clear hierarchy between age-based and condition-based policies, and within
these two groups a clear effect of the parameter update strategy. Here, CBM-
cpu obtains the longest system runtimes, and thus the lowest cost rates, with a
clear advantage over CBM-epu and CBM-npu.

Overall, it seems that CBM-cpu can exert its adaptive strengths most effec-
tively when prior assumptions are too pessimistic, while also performing well
when prior assumptions are correct or too optimistic.

8. Summary and outlook

In this paper, we have proposed a new condition-based maintenance policy
for systems based on monitoring of the functioning of components. We use the
survival signature to compute system reliability functions for given component
models, and propose to use Weibull component models with conjugate priors
to express expert knowledge. The resulting policy shows promising results for
different numerical examples and a small simulation study.

There are several aspects in our modeling that warrant further investigation.
In this paper, we assume that component failure times are observed precisely via
monitoring. However, in many applications, the component status can only be
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determined at inspections, leading to interval-censored failure time observations.
Extending the model to account for interval-censored failure times would allow
to derive a condition-based maintenance policy with wider-spaced inspections
by determining the optimal moment for the next inspection of the system.

Another way to relax the assumption of precise component monitoring is to
consider unreliable detection of component failures. Our approach may be quite
sensitive to the non-detection of component failures, and one could tackle this
by including a probabilistic observation model, which assigns probabilities to
false positives and false negatives in the component monitoring.

We also assume that the component-specific Weibull shape parameters are
known, and update only the scale parameters. We restricted ourselves to this
simplistic modelling to allow for a clear and straight-forward demonstration of
the general approach. In a practical application, the shape parameters should be
jointly updated together with the scale parameters. This could be implemented
by adopting the discretized approach by Soland (1969).

As mentioned at the end of Section 5.3, we currently disregard the possi-
bility of common cause failures, i.e., simultaneous failures with a shared root
cause. Common cause failures can drastically reduce the system reliability by
leading to sudden system failures. To offer a realistic estimation of the op-

timal time to maintenance τ
(tnow)
∗ , the system RLD Rsys(t) needs to account

for such failures when they are possible. When common cause failures can af-
fect several component types at once, the joint posterior predictive probabilities

P
(⋂K

k=1{Ckt = lk}
)

in (1) cannot be obtained as a product of component pos-

terior predictive probabilities any more. We think that by combining ideas from
Coolen and Coolen-Maturi (2015) and Troffaes et al. (2014), the proposed policy
could be extended to accommodate common cause failures.

In our policy, we assumed that in both preventive and corrective replace-
ment all components are restored to an as good as new state. An obvious
alternative is to only replace the failed components, but would this offer any
advantage? Furthermore, could it be even optimal to replace a subset of the
failed components only? Such selective component replacement schemes seem
to be a promising area for research. To account for different ages of components
at system startup, one could introduce artificial component types in (1), group-
ing components both by type and by age. However, computational complexity
increases with the number of component types, so it seems most promising to
replace batches of components, or all components of one type.

A further simplifying assumption relates to the cost of preventive and cor-
rective replacements, which we consider as fixed. In many real-life applications,
maintenance costs vary over time (e.g., increased labour cost due to overtime
or night shift premiums), and may depend on the number of failed components,
or even on the exact system state. In our approach, time-dependent cost struc-
tures can be easily accounted for, by letting cp and cc in (14) depend on τ . It
will be more complex to account for costs that are dependent on the system
state, but our approach already provides the necessary information in form of
the posterior predictive distributions derived in Section 4.2.
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Another promising extension would be to use sets of conjugate priors for the
component models. This approach is described in Walter and Coolen (2017),

leading to sets of residual life distributions R
(tnow)
sys (t). Consequently, we would

obtain a set of expected operational cycle cost rate functions g(tnow)(τ). The

determination of the (set of) optimal time(s) to maintenance τ
(tnow)
∗ is then non-

trivial, and would involve decision criteria discussed in the imprecise probability
literature, like E-admissibility, maximality, or maximin (see, e.g., §8 Augustin
et al., 2014).
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